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Introduction to Athena

THENA is a language for expressing proofs and computations. We begin with a few
A remarks on computation. As a programming language, Athena is similar to Scheme.
It is higher-order, meaning that procedures are first-class values that can be passed as (pos-
sibly anonynous) arguments or returned as results; it is dynamically typed, meaning that
type checking is performed at run-time; it has side effects, featuring updatable cells and
vectors; it relies heavily on lists for structuring data, and those lists can be heterogeneous
(containing elements of arbitrary types); and the main tool for control flow is the procedure
call.

Nonetheless, Athena’s programming language differs from Scheme in several respects.
At the somewhat superficial level of concrete syntax, it differs in allowing infix notation
in addition to the prefix (s-expression) notation of Scheme. A more significant difference
lies in Athena’s formal semantics, which are a function of not just the usual semantic
abstractions, such as a lexical environment and a store, but also of a novel semantic item
called an assumption base, which represents, unsurprisingly, a finite set of assumptions.
The fact that this new semantic abstraction is built into the formal semantics of the core
language is enabled by (and in turn requires) another point of divergence of Athena from
more conventional programming languages: differences in the underlying data values, the
most salient one being that the concept of a logical proposition, expressed by a formal
sentence, takes center stage in Athena.

The basic data values of Scheme are more or less like those of other programming lan-
guages: numbers, strings, and so on. From these basic values, Scheme can build other, more
complex values, such as lists and procedures. But the fundamental computational mech-
anisms of Scheme (which are essentially those of the A-calculus, i.e., mainly procedural
abstraction and application) can be deployed on any domain (type) of primitive values, not
just the customary ones. The computational mechanisms remain the same, though the uni-
verse of primitive values can vary. Athena deploys these same computational mechanisms
but on a different set of primitive values.

Athena’s primitive data values include characters and other such standard fare. But these
are not the fundamental data values of the language. The fundamental data values are zerms
and sentences. A term is a symbolic structure, essentially a tree whose every node contains
either a function symbol or a variable. Terms should be familiar to you from previous logic
courses, or even from elementary math. Expressions such as 3 + 5, x/2, 78, etc., are all
terms. So are names such as Joe, Joe’s father, and so on. The job of terms is to denote
or represent individual objects in some domain of interest. For instance, the term 3 + 5
denotes the integer 8, while the term Joe presumably designates some individual by that
name, and Joe's father represents the father of that individual. A sentence is essentially
a formula of first-order logic: either an atomic formula, or a Boolean combination of for-
mulas, or a quantification. We will describe these in greater detail later in this chapter.
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Sentences are used to express propositions about various domains of interest. They serve
as the conclusions of proofs.

Computations in Athena usually involve terms and sentences. Procedures, for instance,
typically take terms or sentences as inputs, manipulate them in some way or other, and
eventually produce some term or sentence as output. Athena does provide numbers (though
these are just special kinds of terms), characters, strings, rudimentary I/O facilities, etc., so
it can be used as a general-purpose programming language. But the focus is on terms and
sentences, as these are the fundamental ingredients for writing proofs. So the programming
language of Athena can be viewed as a Scheme-like version of the A-calculus designed
specifically to compute with terms and sentences.'

To repeat, there are two uses for Athena: (a) writing programs, usually, though not neces-
sarily, intended to compute with terms and sentences; and (b) writing proofs. Accordingly,
there are two fundamental syntactic categories in the language: deductions, which repre-
sent proofs, and expressions, which represent computations (programs).> We typically use
the letters D and E to range over the sets of all deductions and expressions, respectively.
Deductions and expressions are distinct categories, each with its own syntax and seman-
tics, but the two are intertwined: deductions always contain expressions, and expressions
may contain deductions. A phrase F is either an expression or a deduction. Thus, if we
were to write a BNF grammar describing the syntax of the language, it would look like
this:

E = (Expressions, for computing)
D = (Deductions, for proving) 2.1
F = E|D  (Phrases)

Intuitively, the difference between an expression and a deduction is simple. A deduction
D represents a logical argument (a proof), and so, if successful, it can only result in one
type of value as output: a sentence, such as a conjunction or negation, that expresses some
proposition or other, say, that all prime numbers greater than 2 are odd. That sentence repre-
sents the conclusion of the proof. An expression E, by contrast, is not likewise constrained.
An expression represents an arbitrary computation, so its output could be a value of any
type, such as a numeric term, or an ASCII character, or a list of values, and so on. It may
even be a sentence. But there is a crucial difference between sentences produced by expres-
sions versus sentences produced by deductions. A sentence that results from a deduction
is guaranteed to be a logical consequence of whatever assumptions were in effect at the
time when the deduction was evaluated. No such guarantee is provided for a sentence pro-
duced by a computation. A computation can generate any sentence it wishes, including

1 While both terms and sentences could be represented by appropriate data structures in any general-purpose
programming language, having them as built-in primitives woven into the syntactic and semantic kernel of the
language carries a number of practical advantages.

2 In this book, we use the terms “deduction” and “proof” interchangeably.
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an outright contradiction, without any restrictions whatsoever. But a deduction has to play
within a sharply delimited sandbox: it can only result in sentences that are entailed by the
assumptions that are currently operative. So the moves that a deduction can make at any
given time are much more restricted.

As with most functionally oriented languages, Athena’s mode of operation can be pic-
tured as follows: On one side we have phrases (i.e., expressions or deductions), which are
the syntactically well-formed strings of the language; and on the other side we have a class
of values, such as characters, terms, sentences, and the like. Athena works by evaluating
input phrases and displaying the results. This process is called evaluation, because it pro-
duces the value that corresponds to a given phrase. Evaluation might not always succeed
in yielding a value. It might fail to terminate (by getting into an infinite loop), or it might
generate an error (such as a division by zero). We write V for the set of all values, and we
use the letter V" as a variable ranging over V.

A phrase F cannot be evaluated in a vacuum. For one thing, the phrase may contain
various names, and we need to know what those names mean in order to extract the value
of F. Consider, for example, a procedure application such as (plus x 2), where plus is a
procedure that takes two numeric terms and produces their sum. To compute the value of
this expression, we need to know the value of x. In general, we need to know the lexical
environment in which the evaluation is taking place. An environment is just a mapping
from names (identifiers) to values. For instance, if we are working in the context of an
environment in which the name x is bound to 7, then we can compute the output 9 as the
value of (plus x 2). Second, since a phrase may be a proof, and every proof relies on
some working assumptions, also known as premises, we also need to be given a set of
premises—a so-called assumption base. Third, since Athena has imperative features such
as updatable memory locations (“cells”) and vectors, we also need to be given a store,
which is essentially a function that tells us whether a given memory location is occupied
or empty, and if occupied, what the value residing there is. Finally, we need a symbol
set, which is a finite collection of function symbols and their signatures (we will explain
what these are shortly); this information is needed primarily in order to properly interpret
patterns.

In summary, the evaluation of a phrase F' always occurs relative to, or with respect to
these four semantic parameters: (a) a lexical environment p; (b) an assumption base f; (c)
a store ¢; and (d) a symbol set y . Schematically:

Evaluation
Input: Phrase - Output: Value V'
(w.r.t. given p, f,0,7)

A rigorous description of the language would require a precise specification of the syntax
of phrases, via a grammar of the form (2.1); a precise specification of the set of values
V; and a precise description of exactly what value V, if any, corresponds to any phrase F,
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relative to a given environment, assumption base, store, and symbol set. Such a description
is given in Appendix A. In this chapter we take a less formal approach. We will be chiefly
concerned with expressions, that is, with the computational aspects of Athena. We will
describe most available kinds of expressions and explain what values they produce, usually
without explicit references to the given environment, assumption base, store, or symbol
set. We start with terms and sentences in Sections 2.3 and 2.4, respectively. After that we
move on to other features of Athena’s programming language. Deductions will be briefly
addressed in general terms in Section 2.10, but the syntax and semantics of most deductions
will be introduced in later chapters as needed. Before we can get to terms and sentences, we
need to cover some preliminary material on domains and function symbols, in Section 2.2.
And before that still, we need to say a few words on how to interact with Athena.

Bear in mind that it is not necessary to go through this chapter from start to finish.
Only Sections 2.1-2.10 and the summary (Section 2.17) need to be read in their entirety
before continuing to other chapters. (Also, at least the first five exercises are very strongly
recommended.) You can return later to the remaining sections on an as-needed basis.

2.1 Interacting with Athena

Athena can be used either in batch mode or interactively. The interactive mode consists
of a read-eval-print loop similar to that of other languages (Scheme, ML, Python, Prolog,
etc.). The user enters some input in response to the prompt >, Athena evaluates that input,
displays the result, and the process is then repeated. The user can quit at any time by
entering quit at the input prompt.

Typing directly at the prompt all the time is tiresome. It is often more convenient to edit
a chunk of Athena code in a file, say file.ath, and then have Athena read the contents of
that entire file, processing the inputs sequentially from the top of the file to the bottom as
if they had been entered directly at the prompt. This can be done with the load directive.
Typing

load "file.ath"

at the Athena prompt will process file.ath in that manner. The file extension .ath can be
omitted; to load foo.ath it suffices to write load "foo". Also, when Athena is started, it
can be given a file name as a command-line argument, and the file will be loaded into the
session.

Note that load commands can themselves appear inside files. If the command

load "filel"

is encountered while loading file.ath, Athena will proceed to load filel.ath and then
resume loading the rest of file.ath.
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Inside a file, the character # marks the beginning of a comment. All subsequent charac-
ters until the end of the line are ignored.

A word on code listings: A typical listing displays the input prompt >, followed by
some input to Athena, followed by a blank line, followed by Athena’s response. Additional
Athena inputs, usually preceded by the prompt > and their respective outputs, may follow.
If Athena’s response to a certain input is immaterial, we omit it, and, in addition, we do
not show the prompt before that input. So the absence of the prompt > before some Athena
input indicates that the system’s response to that input is irrelevant for the purposes at hand
and will be omitted. We encourage you to try out all of the code that you encounter as you
read this chapter and the ones that follow.

When input is directly entered at the prompt, it may consist of multiple lines. Accord-
ingly, Athena needs to be told when the input is complete, so that it will know to evaluate
what has been entered and display the result. This end-of-input condition can be signalled
by typing a double semicolon ; ;, or by typing EOF, and then pressing Enter. However, this
is only necessary if the input is not syntactically balanced. The input is syntactically bal-
anced if it either consists of a single token (a single word or number), or else it starts with a
left parenthesis (or bracket) and ends with a matching right parenthesis (or bracket, respec-
tively). For those inputs it is not necessary to explicitly type ;; or EOF at the end—simply
press Enter (even if the input consists of multiple lines) and Athena will realize that the
input is complete because it has been balanced in the sense we just described, and it will
then go on to evaluate what you have typed. But if the input is not syntactically balanced in
that way, then ; ; or EOF must be typed at the end. Of course, if one is writing Athena code
in a file f.ath to be loaded later, then these end-of-input markers do not need to appear
anywhere inside f. In the code listings that follow we generally omit these markers.

2.2 Domains and function symbols
A domain is simply a set of objects that we want to talk about. We can introduce one with
the domain keyword. For example,
> domain Person

New domain Person introduced.

introduces a domain whose elements will be (presumably) the persons in some given set.’
The following is an equivalent way of introducing this domain:

(domain Person)

3 Whatever set we happen to be concerned with; it could be the set of students registered for some college course,
the set of citizens of some country, or the set of all people who have ever lived or ever will live. In general, the
interpretation of the domains that we introduce is up to us; this point is elaborated in Section 5.6.
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Both of the above declarations are syntactically valid. In general, Athena code can be writ-
ten either in prefix form, using fully parenthesized Lisp-like “s-expressions,” or in (largely)
infix form that requires considerably fewer parentheses. In this book we generally use infix
as the default notation, because we believe that it is more readable, but s-expressions have
their own advantages and for those who prefer them Appendix A specifies the s-expression
version of every Athena construct.

Multiple domains can be introduced with the domains keyword:

domains Element, Set

There are no syntactic restrictions on domain names. Any legal Athena identifier / can be
used as the name of a domain.*

Domains are sorzs. There are other kinds of sorts besides domains (namely datatypes,
discussed in Section 2.7), but domains are the simplest sorts there are.

Once we have some sorts available we can go ahead and declare function symbols, for
instance:

> declare father: [Person] -> Person
New symbol father declared.

This simply says that father is a symbol denoting an operation (function) that takes a
person and produces another person. We refer to the expression [Person] -> Person as
the signature of father. At this point Athena knows nothing about the symbol father
other than its signature.

The general syntax form for a function symbol declaration is

declare f: [Dy --- D,1 > D

where /' is an identifier and the D; and D are previously introduced sorts, n > 0. We refer
to Di --- D, as the input sorts of f, and to D as the output sort, or as the range of f. The
number of input sorts, n, is the arity of f. Function symbols must be unique, so they cannot
be redeclared at the top level (although a symbol can be freely redeclared inside different
modules). There is no conventional overloading whereby one and the same function symbol
can be given multiple signatures at the top level, but Athena does provide a different (and
in some ways more flexible) form of overloading, described in Section 2.13.

For brevity, multiple function symbols that share the same signature can be declared in
a single line by separating them with commas, for instance:

4 An identifier in Athena is pretty much any nonempty string of printable ASCII characters that is not a reserved
word (Appendix A has a complete list of all reserved words); does not start with a character from this set:
{,"4,%,°,0),,,:5,2,0,1, ‘}; and doesn’t contain any characters from this set: {",#,),,, :, ;,1}. Throughout
this book, we use the letter / as a variable ranging over the set of identifiers.



fpmics 2016/9/20 10:19 Page 25 #49

2.2. DOMAINS AND FUNCTION SYMBOLS 25

declare union, intersection: [Set Set] -> Set
declare father, mother: [Person] -> Person

A function symbol of arity zero is called a constant symbol, or simply a constant. A
constant symbol ¢ of domain D can be introduced simply by writing declare ¢: D, instead

ofdeclare ¢: []1 -> D. Thetwo forms are equivalent, though the first is simpler and more
convenient.

> declare joe: Person

New symbol joe declared.
> declare null: [] -> Set
New symbol null declared.

Multiple constant symbols of the same sort can be introduced by separating them with
commas:

declare peter, tom, ann, mary: Person

declare e, el,e2: Element

declare S, S1, S2: Set

There are several built-in constants in Athena. Two of them are true and false, both of

which are elements of the built-in sort Boolean. The two numeric domains Int (integers)
and Real (reals) are also built-in. Every integer numeral, such as 3, 594, (- 2), etc., is a
constant term of sort Int, while every real numeral (such as 4.6, .217, (- 1.5), etc.) is a
constant symbol of sort Real.

A function symbol whose range is Boolean is also called a relation (or predicate) sym-
bol, or simply “predicate” for short. Some examples:

declare in: [Element Set] -> Boolean

declare male, female: [Person] -> Boolean
declare siblings: [Person Person] -> Boolean
declare subset: [Set Set] -> Boolean

Here in is a binary predicate that takes an element and a set and “returns” true or false,
presumably according to whether or not the given element is a member of the given set.’

5 As with domains, the interpretation of the function symbols that we declare (what these symbols actually mean)
is up to us. We will soon see how to write down axioms that can help to prescribe the meaning of a symbol.
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The symbols male and female are unary predicates on Person, while siblings and subset
are binary predicates on Person and Set, respectively.

Some function symbols are built-in. One of them is the binary equality predicate =,
which takes any two objects of the same sort S and returns a Boolean. S can be arbitrary.°

We will generally use the letters f, g, and 4 as typical function symbols; a, b, ¢, and d
as constant symbols; and P, O, and R as predicates. The letters f, g, and 4 will actually do
double duty; they will also serve as variables ranging over Athena procedures. The context
will always disambiguate their use.

Function symbols are first-class data values in Athena. They can be denoted by identi-
fiers, passed to procedures as arguments and returned as results of procedure calls.

We stress that function symbols are not procedures. They are ordinary data values that
can be manipulated by procedures.” An example of a procedure that takes function symbols
as arguments is get-precedence, which we discuss in the next section.

A procedure is the usual sort of thing written by users, a (possibly recursive)
lambda abstraction designed to compute anything from the factorial function to much more
complicated functions. Here is an Athena procedure for the factorial function, for example:

define (fact n) :=
check {
(less? n 1) => 1
| else => (times n (fact (minus n 1)))

}

where less?, times, and minus are primitive (built-in) procedures operating on numeric
terms:

> (less? 7 8)
Term: true

> (times 2 3)
Term: 6

> (minus 5 1)
Term: 4

We will see a few more primitive procedures in this chapter.

6 More precisely, = is a polymorphic function symbol. We discuss polymorphism in more detail in Section 2.8.

7 Of course, procedures themselves are also “ordinary data values that can be manipulated by procedures,” as
is the case in every higher-order functional language. But there is an important difference: Procedures cannot be
compared for equality, whereas function symbols can. This ostensibly minor technicality has important notational
ramifications.
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A function symbol like union or father, by contrast, is just a constant data item. We
cannot perform any meaningful computations by “applying” such function symbols; all
we can get by such applications are unreduced terms, as we will see in the next section.

2.3 Terms

IO N T

A term is a syntactic object that represents an element of some sort. The simplest kind of
term is a constant symbol. For instance, assuming the declarations of the previous section,
if we type joe at the Athena prompt, Athena will recognize the input as a term:

> joe
Term: joe

We can also ask Athena to print the sort of this (or any other) term:
> (println (sort-of joe))
Person

Unit: O

Athena knows that joe denotes an individual in the domain Person, so it responds by
printing the name of that domain on line 3. (The unit value () that appears on line 5 is the
value returned by the procedure print1ln. Most procedures with side-effects return the unit
value. We will come back to this later.)

A variable is also a term. It can be thought of as representing an indeterminate or unspec-
ified individual of some sort, but that is just a vague intuition aid—what exactly is an
“unspecified individual” after all? It is more precise to say that a variable is a syntactic
object acting as a placeholder that can be replaced by other terms in appropriate contexts.
Variables are of the form ?7: S, for any identifier / and any sort S; we refer to / as the name
of the variable, and to S as its sort. Thus, the following are all legal variables:

?x:Person
?7S25:Set
?foo-bar:Int
?b_1:Boolean
?@sd%&:Real
There is no restriction on the length of a variable’s name, and very few restrictions on what

characters may appear in it, as illustrated by the last example (see also footnote 4). We will
use x,,z,...as metavariables, that is, as variables ranging over the set of Athena variables.
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Constant symbols and variables are primitive or simple terms, with no internal structure.
More complex terms can be formed by applying a function symbol f to » given terms
t -+ -1y, where n is the arity of /. Such an application is generally written in prefix form
as (f f1---1,), though see the remarks below about infix notation for binary and unary
function symbols. We say that 1" is the root symbol (or just the “root”) of the application,
and that #1 - - - t,, are its children. Thus, the application

(father (father joe))

is a legal term. Its root is the symbol father, and it has only one child, the term
(father joe). Some more examples of legal terms:

(in e S)

(union null S2)

(male (father joe))

(subset null (union ?X null))

There are two primitive procedures that operate on term applications, root and children,
which respectively return the root symbol of an application and its children (as a list of
terms, ordered from left to right). For example:

define t := (father (mother joe))

> (root t)

Symbol: father

> (children t)

List: [(mother joe)]

Note that constant symbols may also be viewed as applications with no children.’ Thus:
> (root joe)

Symbol: joe

> (children joe)

List: []

It is convenient to be able to use these procedures on variables as well. Applying root and
children to a variable x will return x and the empty list, respectively.

8 A more common syntax for such terms that you may be familiar with is f(z1, . . ., #,). When we use conventional
mathematical notation we will write terms in that syntax.

9 Indeed, Athena treats (joe) and joe interchangeably.
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We will have more to say about lists later on, but some brief remarks are in order here.
A list of n > 0 values V7 - - - V,, can be formed simply by enclosing the values inside square

brackets: [V7 - - - V,,]. For instance:

> [tom ann]

List: [tom ann]

> [1]

List: []

> [tom [peter mary] ann]

List: [tom [peter mary] ann]

Note that Athena lists, like those of Scheme but unlike those of ML or Haskell, can be
heterogeneous: They may contain elements of different types. The most convenient and
elegant way to manipulate lists is via pattern matching , which we discuss later. Outside
of pattern matching, there are a number of primitive procedures for working with lists,
the most useful of which are add, head, tail, length, rev, and join. The first one is a
binary procedure that simply takes a value /" and a list L and produces the list obtained
by prepending V' to the front of L. The functionality of the remaining five procedures
should be clear from their names. Note that the concatenation procedure join can take
an arbitrary number of arguments (one of the few Athena procedures without a fixed arity).

Some examples:

> (add 1 [2 3D1)
List: [1 2 3]

> (head [1 2 31)
Term: 1

> (tail [1 2 31)
List: [2 3]

> (rev [1 2 31)
List: [3 2 1]

> (length [1 2 31)
Term: 3

> (join [1 2] ['a

‘b1 [31)
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List: [1 2 'a 'b 3]

The infix-friendly identifier added-to is globally defined as an alias for add, so we can
write, for example:

> (rev 1 added-to [21])

List: [2 1]

Returning to terms, we say that a term ¢ is ground iff it does not contain any variables.
Alternatively, ¢ is ground iff it only contains function symbols (including constants). Thus,
(father joe) is ground, but (father ?x:Person) is not.

We generally use the letters s and ¢ (possibly with subscripts/superscripts) to designate
terms.

The subterm relation can be inductively defined through a number of simple rules,
namely:

1. Every term ¢ is a subterm of itself.
2. Iftis an application (f 7] - - -1,), then every subterm of a child # is also a subterm of 7.

3. A term s is a subterm of a term ¢ if and only if it can be shown to be so by the above
rules.

Inductive definitions like this one can readily be turned into recursive Athena procedures,
and we will see such examples throughout the book. A proper subterm of ¢ is any subterm
of ¢ other than itself. If 73 is a proper subterm of #; and there is no term #, such that #, is a
proper subterm of 71 and #3 is a proper subterm of 7o, we say that 3 is an immediate subterm
of 71.

As should be expected, every legal term is of a certain sort. The sort of (father joe),
for example, is Person; the sort of

(in ?x:Element ?s:Set)

is Boolean; and so on. In general, the sort of a term (f ¢ ---#,) is D, where D is the range
of f. Some terms, however, are ill-sorted, e.g., (father true). An attempt to construct
this term would result in a “sort error” because the function symbol father requires an
argument from the Person domain and we are giving it a Boolean instead. Athena performs
sort checking automatically and will detect and report any ill-sorted terms as errors:

> (father true)
standard input:1:2: Error: Unable to infer a sort for the term:(father true)

(Failed to unify the sorts Boolean and Person.)
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Here 1:2 indicates line 1, column 2, the precise position of the offending term in the
input stream; and standard input means that the term was entered directly at the Athena
prompt. If the term (father true) had been read in batch mode from a file foo.ath
instead, and the term was found, say, on line 279, column 35, the message would have
been:

foo.ath:279:35: Error: Unable to infer ---

Athena prints out the ill-sorted term and also gives a parenthetical indication (line 5 above)
of why it was unable to infer a sort for the term.

Note that we speak of “ill-sorted” terms, “sort errors,” etc., rather than ill-typed terms,
type errors, etc. There is an important distinction between types and sorts in Athena. Only
terms have sorts, but terms are just one type of value in Athena. There are several other
types: sentences, lists, procedures, methods, the unit value, etc. So we say that the type of
null is term, and its sort is Set. This crucial distinction will become clearer as you gain
more experience with the language.

It is not necessary to annotate every variable occurrence inside a term with a sort. Athena
can usually infer the proper sort of every variable occurrence automatically. For instance:

> (in ?x ?S)
Term: (in ?x:Element ?S:Set)

Here we typed in the term (in ?x ?S) without any sort annotations. As we can tell from
its response, Athena inferred that in this term the sort of ?x must be Element while that of
7S is Set. Another example:

> (father ?p)
Term: (father ?p:Person)

Omitting explicit sort annotations for variables can save us a good deal of typing, and we
will generally follow that practice, especially when the omitted sorts are easily deducible
from the context. Occasionally, however, inserting such annotations can make the code
more readable.

A binary function symbol can always be used in infix, that is, between its two arguments
rather than in front of them. For example, instead of (union null S) we may write

(null union S).

Also, when we have successive applications of unary function symbols, it is not necessary
to enclose each such application within parentheses. Thus, instead of writing

(father (father joe))

we may simply write (father father joe). Accordingly, some of the terms we have seen
so far can also be written as follows:
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(father joe)

(father father joe)

(e in S)

(null union S2)

(male father joe)

(null subset ?x union null)

Even though users may enter terms in infix, Athena always prints output terms in full prefix
form, as so-called “s-expressions”:

> (null union ?s)
Term: (union null ?s:Set)

Prefix notation is generally better for output because it is easier to indent, and proper
indentation can be invaluable when trying to read large terms (or sentences, as we will
soon see). Note also that when Athena prints its output, all variables are fully annotated
with their most general possible sorts. This is the default; it can be turned off by issuing
the top-level directive set-flag print-var-sorts "off"; see also Section 2.16.

Every function symbol has a precedence level, which can be obtained with the primitive
procedure get-precedence:

> (get-precedence subset)
Term: 100
> (get-precedence union)
Term: 110

By default, every binary relation symbol (i.e., binary function symbol with Boolean range)
is given a precedence of 100, while other binary or unary function symbols are given a
precedence of 110.

Precedence levels can be set explicitly with the directive set-precedence:

> set-precedence union 200
oK.

Now that union has a higher precedence than intersection (which has the default 110),
we expect an expression such as

(?s1 union ?s2 intersection ?s3)
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to be parsed as (intersection (union ?s1 ?s2) ?s3), and we see that this is indeed the
case:

> (?s1 union ?s2 intersection ?s3)

Term: (intersection (union ?s1:Set ?s2:Set)
?s3:Set)

Binary function symbols also have associativities that can be programmatically obtained
and modified. By default, every binary function symbol associates to the right:
> (?s1 union ?s2 union ?s3)

Term: (union ?s1:Set
(union ?s2:Set ?s3:Set))

The associativity of a binary function symbol can be explicitly specified with the directives
left-assoc and right-assoc:

> left-assoc union
oK.
> (?s1 union ?s2 union ?s3)

Term: (union (union ?s1:Set ?s2:Set)
?7s3:Set)

The unary procedure get-assoc returns a string representing the associativity of its input
function symbol.

Infix notation can be used not just for function symbols, but for binary procedures as
well. For instance:

> (7 less? 8)

Term: true

> (2 times 3)

Term: 6

> (5 minus 1)

Term: 4

Thus, the earlier factorial example could also be written as follows:
define (fact n) :=

check {
(n less? 1) => 1
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| else => (n times fact n minus 1)

3

2.4 Sentences

Sentences are the bread and butter of Athena. Every successful proof derives a unique sen-

tence. Sentences express propositions about relationships that might hold among elements

of various sorts. There are three kinds of sentences:

1.

Atomic sentences, or just afoms. These are simply terms of sort Boolean. Examples are
(siblings peter (father joe))

and (subset ?s1 (union ?s1 ?s2)).

Boolean combinations, obtained from other sentences through one of the five sentential
10

constructors:'” not, and, or, if, and iff, or their synonyms, as shown in the following
table.
Constructor Synonym Prefix mode Infix mode Interpretation
not ~ (not p) ~p Negation
and & (and p q) & q Conjunction
or | (or p @) (D) Disjunction
if ==> G(f p ) P == q) Conditional
iff <==> (iff p q) (p <==> ¢q) Biconditional

One can use any connective or its synonym in either prefix or infix mode, although,
by convention, the synonyms are typically used in infix mode. As with terms, Athena
always writes output sentences in prefix. In infix mode, precedence levels come into
play, often allowing the omission of parenthesis pairs that would be required in prefix
mode. The procedure get-precedence can be used to inpect the precedence of all these
connectives, but briefly, conjunction binds tighter than disjunction, and both bind tighter
than conditionals and biconditionals. Negation has the highest precedence of all five
sentential constructors. Therefore, for example, (~ A & B | C) is understood as the
disjunction of ((~ A) & B) and C. All binary sentential constructors associate to the
right by default. (This can be changed with the left-assoc directive, but such a change
is not recommended.) In a conjunction (p & ¢), we refer to p and ¢ as conjuncts, and
in a disjunction (p | ¢), we refer to p and g as disjuncts. A conditional (p ==> ¢) can

10 We use the term sentential (or “logical”) connective interchangeably with “sentential constructor.” Note that

the term “constructor” is not used here in the technical datatype sense introduced in Section 2.7.
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also be read as “if p then ¢” or even as “p implies ¢.”'! We call p the antecedent and g
the consequent of the conditional.
The combination of negation with equality has its own shorthand:

Connective Synonym Prefix Infix Interpretation
unequal =/= (unequal s 1) (s =/=1) s is not equal to #

Because function symbols and sentential constructors are regular data values, users
can define their own abbreviations and use them in either prefix or infix mode. For
instance:

define \/ := or

When written in prefix, conjunctions and disjunctions can be polyadic; that is, the
sentential constructors and and or may receive an arbitrary number of sentences as
arguments, not just two. We will have more to say on that shortly.

3. Quantified sentences. There are two quantifiers in Athena, forall and exists. A quan-
tified sentence is of the form (Q x:S . p) where Q is a quantifier, x:S is a variable of
sort S, and p is a sentence—the body of the quantification, representing the scope of the
quantified variable x:S. The period is best omitted if the body p is written in prefix, but,
when present, it must be surrounded by spaces. For example:

(forall ?x . ?x =/= father ?x). 2.2)

Intuitively, a sentence of the form (forall x:S . p) says that p holds for every element
of sort S, while (exists x:S§ . p) says that there is some element of sort S for which
p holds. In summary:

Quantifier Prefix Infix Interpretation
forall (forall x:S p) (forall x:S . p) p holds for every x: S
exists (exists x: S p) (exists x:S . p) p holds for some x:S

We generally use the letters p, ¢, and r as variables ranging over sentences.
The following shows what happens when we type sentence (2.2) at the Athena prompt:

> (forall ?x . ?x =/= father ?x)

Sentence: (forall ?x:Person

11 It is debatable whether the sentential constructor ==> has any meaningful correspondence to the informal
notion of implication. Many logicians have argued that implication between two propositions requires strong
relationships between the respective propositional contents, relationships that cannot be captured by any truth-
functional treatment of sentential constructors. For the purposes of this book, however, we will ignore such
debates and will freely “speak with the vulgar” to say that (p ==> ¢) means that p implies q.
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(not (= ?x:Person
(father ?x:Person))))

Athena acknowledges that a sentence was entered, and displays that sentence using proper
indentation. Note that we did not have to explicitly indicate the sort of the quantified vari-
able. Athena inferred that ?x ranges over Person, and annotated every occurrence of ?x with
that sort. But, had we wanted, we could have explicitly annotated the quantified variable

with its sort:

> (forall ?x:Person . ?x =/= father ?x)

Sentence: (forall ?x:Person

(not (= ?x:Person
(father ?x:Person))))

Or we could annotate every variable occurrence with its sort, or only some such occur-
rences:

> (forall ?x:Person . ?x:Person =/= father ?x:Person)

Sentence: (forall ?x:Person

(not (= ?x:Person
(father ?x:Person))))

> (forall ?x . ?x =/= father ?x:Person)

Sentence: (forall ?x:Person
(not (= ?x:Person
(father ?x:Person))))
It is usually best to omit as many variable annotations as possible and let Athena work

them out.
Note that because the body of (2.2) is written entirely in infix, we did not have to insert

any additional parentheses in it. Had we wanted, we could have entered the sentence in a
more explicit form by parenthesizing either the (father ?x) term or the entire body of the

quantified sentence:

> (forall ?x:Person . ?x:Person =/= (father ?x:Person))

Sentence: (forall ?x:Person
(not (= ?x:Person
(father ?x:Person))))

or:

> (forall ?x:Person . (?x:Person =/= (father ?x:Person)))

Sentence: (forall ?x:Person
(not (= ?x:Person
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(father ?x:Person))))

Typically, however, when we write sentences in infix we omit as many pairs of
parentheses as possible. In full prefix notation we would write sentence (2.2) as
(forall ?x (=/= ?x (father ?x))). Note that in prefix we typically omit the dot imme-
diately before the body of the quantified sentence.

As a shorthand for iterated occurrences of the same quantifier, one can enter sentences
of the form (Q xj---x, . p) for a quantifier Q and n > 0 variables x1 - - - x,,. For instance:

> (forall ?S2 ?S2 . ?S1 = ?S2 <==> ?S1 subset ?S2 & ?S2 subset ?S1)

Sentence: (forall ?S1:Set
(forall ?7S2:Set
(iff (= ?S1:Set ?S2:Set)
(and (subset ?S1:Set ?S2:Set)
(subset ?S2:Set ?S1:Set)))))

Another shorthand exists for prefix applications of and and or. Both of these can take an
arbitrary number # > 0 of sentential arguments: (and pj ---p,) and (or p;---p,). Ininfix
mode we can get somewhat similar results with (p; & --- & p,) and (p; | -+ | pu),
respectively. Note, however, that these two latter expressions will give nested and right-
associated applications of the binary versions of and and or, whereas in the case of
(and pi---py) or (or pi---p,) we have a single sentential constructor applied to an arbi-
trarily large number of » > 0 sentences.

In addition, all five sentential constructors can accept a /ist of sentences as their argu-
ments, which is quite useful for programmatic applications of these constructors:

> (and [A B C])
Sentence: (and A
B
)
> (if [A BD)
Sentence: (if A B)

> (not [A])

Sentence: (not A)

We inductively define the subsentence relation as follows:

1. Every sentence p is a subsentence of itself.

2. Ifp is a negation (~ ¢), then every subsentence of ¢ is also a subsentence of p.
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3. Ifpis a conjunction (or disjunction), then any subsentence of any conjunct (or disjunct)
is a subsentence of p.

4. If p is a conditional, then every subsentence of the antecedent or consequent is a sub-
sentence of p.

5. Ifpisabiconditional (p; <==> p»), then every subsentence of p or p; is a subsentence
of p.

6. Ifp is a quantified sentence, then every subsentence of the body is a subsentence of p.

7. A sentence ¢ is a subsentence of p if and only if it can be shown to be so by the
preceding rules.

As was the case with subterms, this definition too can be easily turned into a recursive
Athena procedure; see exercise 3.36. A proper subsentence of p is any subsentence of p
other than itself. If » is a proper subsentence of p and there is no sentence ¢ such that ¢
is a proper subsentence of p and r is a proper subsentence of ¢, then we say that » is an
immediate subsentence of p.

A variable occurrence x: S inside a sentence p is said to be bound iff it is within a quan-
tified subsentence of p of the form (Q x:§ . p’), for some quantifier Q. A variable occur-
rence that is not bound is said to be firee. Free variable occurrences must have consistent
sorts across a given sentence. For instance,

(?x = joe & male ?x)
is legal because both free variable occurrences of ?x are of the same sort (Person), but
(male ?x & ?x = 3)

is not, because one free occurrence of ?x has sort Person and the other has sort Int:

> (?7x = joe & male ?x)

Sentence: (and (= ?x:Person joe)
(male ?x:Person))

> (male ?x & ?x = 3)

Error, top level, 1.1: Unable to verify that this sentence is well-sorted:
(and (male ?x:Person)
(= ?x:Int 3))

(Could not satisfy the constraint 'T189 = (Int /\ Person)
because Int and Person do not have a g.l.b.)

(You can ignore the parenthetical message on lines 12 and 13.) However,
bound variable occurrences can have different sorts in the same sentence:
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> ((forall ?x . male father ?x) & (forall ?x . ?x subset ?x))

Sentence: (and (forall ?x:Person
(male (father ?x:Person)))
(forall ?x:Set
(subset ?x:Set ?x:Set)))

Intuitively, that is because the name of a bound variable is immaterial. For instance, there
is no substantial difference between (forall ?x . male father ?x) and

(forall ?p . male father ?p).

Both sentences say the exact same thing, even though one of them uses ?x as a bound
variable and the other uses ?p. We say that the two sentences are alpha-equivalent, or
alpha-convertible, or “alphabetic” variants. This means that each can be obtained from the
other by consistently renaming bound variables. Alpha-equivalent sentences are essentially
identical, and indeed we will see later that Athena treats them as such for deductive pur-
poses. Alpha-conversion, and specifically alpha-renaming, occurs automatically very often
during the evaluation of Athena proofs. A sentence is alpha-renamed when all bound vari-
able occurrences in it are consistently replaced by fresh (hitherto unseen) variables ranging
over the same sorts.

A very common operation is the safe replacement of every free occurrence of a variable
v inside a sentence p by some term 7. By “safe” we mean that, if necessary, the operation
alpha-renames p to avoid any variable capture that might come about as a result of the
replacement. Variable capture is what would occur if any variables in ¢ were to become
accidentally bound by quantifiers inside p as a result of carrying out the replacement. For
instance, if p is

(exists ?x:Real . ?x:Real > ?y:Real),

vis ?y:Real, and ¢ is (2 * ?x:Real), then naively replacing free occurrences of v inside p
will result in

(exists ?x:Real . ?x:Real > 2 * ),

where the third (and boxed) occurrence of ?x:Real has been accidentally “captured” by the
leading bound occurrence of ?x:Real. An acceptable way of carrying out this replacement
is to first alpha-rename p, obtaining an alphabetic variant p’ of it, say

p’ = (exists ?w:Real . ?w:Real > ?y:Real),
and then carry out the replacement inside p’ instead, obtaining the result

(exists ?w:Real . ?w:Real > 2 * ?x:Real).
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This is legitimate because p and p’ are essentially identical. We write {v — }(p) for this
operation of safely replacing all free occurrences of v inside p by .

We close this section with a tabular summary of Athena’s prefix and infix notations for
first-order logic sentences vis-a-vis corresponding syntax forms often used in conventional
mathematical writing:

Athena prefix Athena infix Conventional

Atoms: (R t---ty) (t1 R ) R(t,...,t)
when n =2 (t1 R 1)

Negations: (not p) ~p (=p)

Conjunctions: (and p1 p2) (1 & p2) (1 Ap2)
Disjunctions: (or p1 p2) (1 | p2) 1V p2)
Conditionals: (if p1 p2) (r1 ==> p2) 1=p2)
Biconditionals: (iff p1 p2) (p1 <==> p2) (p1ep2)
Un. quantifications: (forall x: S p) (forall x:S . p) Vx:S.p)
Ex. quantifications: (exists x: 8 p) (exists x:S . p) 3x:S.p)

Occasionally we may use conventional notation, if we believe that it can simplify or shorten
the exposition.

2.5 Definitions

Definitions let us give a name to a value and then subsequently refer to the value by that
name. This is a key tool for managing complexity. Athena provides a few naming mech-
anisms. One of the most useful is the top-level directive define. Its general syntax form
is:

define [ := F

where 7 is any identifier and F' is a phrase denoting the value that we want to define. Once
a definition has been made, the defined value can be referred to by its name:

> define p := (forall ?s . ?s subset ?s)

Sentence p defined.
> (p & p)

Sentence: (and (forall ?s:Set
(subset ?s:Set ?s:Set))

(forall ?s:Set
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(subset ?s:Set ?s:Set)))
Athena has lexical scoping, which means that new definitions override older ones:
> define t := joe

Term t defined.

Term: joe
> define t := 0@

Term t defined.

Term: 0@

Because function symbols are regular denotable values, we can easily define names for
them and use them as alternative notations. For instance, suppose we want to use the
symbol \/ as an alias for union in a given stretch of text. We can do that with a simple
definition:

define \/ := union

We can now go ahead and use \/ to build terms and sentences and so on:
> \/

Symbol: union

> (e in null \/ S)

Term: (in e
(union null S))

Because logical connectives and quantifiers are also regular denotable values, we can do
the same thing with them. For instance, if we prefer to use all as a universal quantifier, we
can simply say:

> define all := forall
Quantifier all defined.
> (all ?s . ?s subset ?s)

Sentence: (forall ?s:Set
(subset ?s:Set ?s:Set))



