
ferred approach when developing specifications and proofs i

. For instance, consider the first time we

itself for some purpose or other.) The newly defined procedur

has been redefined via

In this section we briefly survey some Athena features that ar



pointer, pointing to a specific



as its first argument and

as its first argument



as its first argument



(passing the key as the first argument to

is finally returned

allow for mutually recursive bindings: An identifier



expressions), but an intuitive understanding will suffice h

is a deduction. For example, the following code defines two mu

is not required when defining procedures or methods at the top
level. The default notation for defining procedures, for ins
of the definition into a . So, for example, we can define a procedure to compute

However, if we want to define an inner recursive procedure (in
a procedure defined at the top level), then we need to use

is a finite function from variables to terms:





tally. For instance, first we

unification

act as placeholders—empty boxes to be filled



effi-
ciently determines whether a term (the first argument) match

ence, from programming languages and databases to artificia

ifier and their corresponding
are quantified sen-

tential quantifier), we proceed by recursively matching



unification
is to find a substitution that renders them identical, that is

unifier
unifiable if and only if there exists a unifier for them. Consider, for in

. They are unifiable, and in this case the unifier is
. Unifiers need not be unique. For instance, the terms

are unifiable under infinitely many substitutions.
can be used to unify two terms (i.e., to produce a unifier for

is returned if the terms cannot be unified. Note that unifiabil
he two might be unifiable

nevertheless. Athena’s procedures for matching and unifica

a collection of infinitely many monomorphic terms (or senten

ing, this means that the values of free identifier occurrence

ing, in which identifiers become bound to different values du

dynamic scoping is conducive to subtle errors that are diffic

consider the following definitions of procedures

Suppose we now realize we should have defined
we redefine it:



where we defined
cedure defined in line 1. This is a static binding, unchanged w
procedure in the second definition. Thus, we must also redefin

to the new function, by reentering the (textually) same defin

In general, if you are interactively entering a series of defi
one or more of them, you’ll also need to reenter the definition
to the ones you have redefined. Of course, if you enter all the definitions in a file that you

e text of the definitions that
need changing and then reload the file.

, we first evaluate


