fpmics 2016/9/20 10:19 Page 89 #113

2.14. PROGRAMMING 89

with N.f. So we could, for instance, develop our theory of natural numbers inside a mod-
ule named, say, N, and then directly introduce a function symbol + inside N to designate
addition, which would altogether avoid the introduction of Plus. This is, in fact, the pre-
ferred approach when developing specifications and proofs in the large. The alternative we
have described here, overload, does not involve modules and can be used in smaller-scale
projects (though it can also come in handy sometimes inside modules).

We have seen that if /' is a function symbol, then after a directive like

overload [g

is issued, / will no longer denote the symbol in question; it will instead denote a procedure
(recall that function symbols and procedures are distinct types of values). This raises the
question of how we can now retrieve the symbol f. For instance, consider the first time we
overload +:

> overload + Plus
OK

>+

Procedure: +

How can we now get ahold of the actual function symbol +? (We might need the symbol
itself for some purpose or other.) The newly defined procedure can still make terms with
the symbol + at the top, so all we need to do is grab that symbol with the root procedure,
though simple pattern matching would also work:

> (root (1 + 2))
Symbol: +

But probably the easiest way to obtain the function symbol after the corresponding name
has been redefined via overload is to use the primitive procedure string->symbol, which
takes a string and, assuming that the current symbol set contains a function symbol f of the
same name as the given string, it returns -

> (string->symbol "+")

Symbol: +

2.14 Programming

In this section we briefly survey some Athena features that are useful for programming.

fpmics 2016/9/20 10:19 Page 90 #114

90 CHAPTER 2. INTRODUCTION TO ATHENA

2.14.1 Characters

A literal character constant starts with ¢ and is followed either by the character itself, if
the character is printable, or else by \d, where d is a numeral of one, two, or three digits
representing the ASCII code of the character:

> ‘A
Character: ‘A
> ‘\68

Character: ‘D

Standard escape and control sequences (also starting with *) are understood as well, for
example, ‘\n indicates the newline character, ‘\t the tab, and so on.

2.14.2 Strings
A string is just a list of characters:
> (print (tail "hello world"))

ello world
Unit: ()

Built-in procedures like rev and join can therefore be directly applied to them.

2.14.3 Cells and vectors

A cell is a storage container that can hold an arbitrary value (possibly another cell). At a
lower level of abstraction, it can be thought of as a constant pointer, pointing to a specific
address where values can be stored. A cell containing a value ¥ can be created with an
expression of the form cell V. The contents of a cell ¢ can be accessed by ref ¢. We can
destructively modify the contents of a cell ¢ by storing a value V in it (overwriting any
previous contents) with an expression of the form set! ¢ V.

> define c := cell 23
Cell c defined.

> ref ¢

Term: 23

> set! ¢ "a string now..."

fpmics 2016/9/20 10:19 Page 91 #115

2.14. PROGRAMMING 91
Unit: ()

> ref c

List: [‘a ‘\blank ‘s ‘t ‘r ‘i ‘n ‘g ‘\blank ‘n ‘o ‘w ‘. ‘. “.]

A vector is essentially an array of values. If N is an expression whose value is a nonnegative
integer numeral, and ¥ is any value, then an expression of the form

make-vector N V'

creates a new vector of length N, every element of which contains V. If 4 is a vector of
size N and i is an index between 0 and N — 1,

vector-sub 4 i

returns the value stored in the i element of 4. To store a value ¥ into the i element of 4
(assuming again that 4 is of size N and 0 < i < N), we write

vector-set! 4 i V.

2.14.4 Tables and maps

A table is a dictionary ADT (abstract data type), implemented as a hash table mapping keys
to values. Keys are hashable Athena values: characters, numbers, strings, but also terms,
sentences, and lists of such values (including lists of lists of such values, etc.). Tables
provide constant-time insertion and lookups, on average. The functionality of tables is
accessible through the module HashTable,?? which includes the following procedures:

1. HashTable.table: A nullary procedure that creates and returns a new hash table.
Optionally, it can take an integer argument specifying the table’s initial size.

2. HashTable.add: A binary procedure that takes a hash table 7 as its first argument and
either a single key-value binding or a list of them as its second argument; and augments
T with the given binding(s). Each binding is either a pair of the form [key val] or else
a 3-element list of the form [key --> val1.>® Multiple bindings are added from left to
right. The unit value is returned.

3. HashTable.lookup: A binary procedure that takes a hash table 7 as its first argument
and an arbitrary key as its second argument and returns the value associated with that
key in 7. It is an error if the key is not bound in 7.

29 See Chapter 7 for more details on Athena’s modules. For now you can think of modules as namespaces very
similar to those of C++, with trivial syntactic differences (e.g., M. x is used instead of M: : x).

30 -->1is a constant function symbol in Athena’s library.

fpmics 2016/9/20 10:19 Page 92 #116

92 CHAPTER 2. INTRODUCTION TO ATHENA

4. HashTable.remove: A binary procedure that takes a hash table 7 as its first argument
and an arbitrary key as its second argument. It is an error if key is not bound in 7.
Otherwise, if key is bound to some val/, then that binding is removed from 7 and val is
returned.

5. HashTable.clear: A unary procedure that takes a hash table 7" and clears it (removes
all bindings from it). The unit value is returned.

6. HashTable.size: A unary procedure that takes a hash table 7 and returns its size (the
number of bindings in 7).

7. HashTable.table->string: A unary procedure that takes a hash table T and returns a
string representation of 7.

8. HashTable.table->1list: A unary procedure that takes a hash table 7" and returns a list
of all the bindings in 7 (as a list of pairs).

A map is also a dictionary ADT, but one that is implemented as a functional tree: insert-
ing a new key-value pair into a map m creates and returns another map »7, obtained from
m by incorporating the new key-value binding; the old map m is left unchanged. Maps
provide logarithmic-time insertions and lookups. To apply a map m to a key k, we simply
write (m k). Thus, notationally, maps are applied just like procedures, although seman-
tically they form a distinct type of value. The rest of the interface of maps is accessible
through the module Map, which includes the procedures described below. Note that map
keys can only come from types of values that admit of computable total orderings. These
coincide with the hashable value types described above. Any value can be used as a map
key, but if it’s not of the right type (admitting of a computable total ordering) then its
printed representation (as a string) will serve as the actual key.

* Map.make: A unary procedure that takes a list of key-value bindings
LLkey, val1] --- L[key, val,]1]

and returns a new map that maps each key; to val;, i = 1, ...,n. The same map can also
be created from scratch with the custom notation:

[{key| :=valy, ..., key, :=val,}|

* Map.add: A binary procedure that takes a map m and a list of bindings (with each binding
being a [key val] pair) and returns a new map m’ that extends m with the given bindings,
added from left to right.

* Map.remove: A binary procedure that takes a map m and a key k and returns the map
obtained from m by removing the binding associated with k. If m has no such binding, it
is returned unchanged.

* Map.size: A unary procedure that takes a map and returns the number of bindings in it.

fpmics 2016/9/20 10:19 Page 93 #117

2.14. PROGRAMMING 93

* Map.keys: A unary procedure that takes a map m and returns a list of all the keys in it.
* Map.values: Similar, except that it returns the list of values in the map.
* Map.key-values: Similar, but a list of [key val] pairs is returned instead.

* Map.map-to-values: A binary procedure that takes a map m and a unary procedure /" and
returns the map obtained from m by applying /" to the values of m.

* Map.map-to-key-values: Similar, except that the unary procedure f expects a pair as an
argument, and f is applied to each key-value pair in the map.

* Map.apply-to-key-values: A binary procedure that takes a map m and a side effect-
producing unary procedure f and applies f to each key-value pair in m. The unit value is
returned.

* Map.foldl: A ternary procedure that takes a map m, a ternary procedure f, and an initial
value V, and returns the value obtained by left-folding f over all key-value pairs of m
(passing the key as the first argument to f and the value as the second; the third argument
of f serves as the accumulator), and using V" as the starting value.

2.14.5 While loops
A while expression is of the form
while E; E».

The semantics of such loops are simple: as long as £ evaluates to true, E; is evaluated.
Such loops are rarely used in practice. Even when side effects are needed, (tail) recursion
is a better alternative.

2.14.6 Expression sequences

A sequence of one or more phrases ending in an expression can be put together with an
expression of this form:
(seq F1---F, E).

The phrases F1, ..., Fy, E are evaluated sequentially and the value of E is finally returned
as the value of the entire seq expression. This form is typically used for code with side
effects.

2.14.7 Recursion

Phrases of the form
letrec{l| :=Ey; --- ; 1, :=E,} F

allow for mutually recursive bindings: An identifier /; might occur free in any Ej, even for
i <j. The precise meaning of these expressions is given by a desugaring in terms of let

fpmics 2016/9/20 10:19 Page 94 #118

94 CHAPTER 2. INTRODUCTION TO ATHENA

and cells (via set! expressions), but an intuitive understanding will suffice here. In most
cases the various E; are lambda or method expressions. The phrase F' is the body of the
letrec. If F is an expression then the entire letrec is an expression, otherwise the letrec
is a deduction. For example, the following code defines two mutually recursive procedures
for determining the parity of an integer:>'

define [even? odd?] :=
letrec {E := lambda (n)
check {(n equal? @) => true
| else => (0 n minus 1)};
0 := lambda (n)
check {(n equal? @) => false
| else => (E n minus 1)}}
[lambda (n) (E (abs n))
lambda (n) (0 (abs n))]

where abs is a primitive procedure that returns the absolute value of a number (integer or
real).

Explicit use of letrec is not required when defining procedures or methods at the top
level. The default notation for defining procedures, for instance, essentially wraps the body
of the definition into a letrec. So, for example, we can define a procedure to compute
factorials as follows:

define (fact n) :=

check {(n less? 2) =>1
| else => (n times fact n minus 1) }

However, if we want to define an inner recursive procedure (introduced inside the body of
a procedure defined at the top level), then we need to use letrec:

define (f ---) :=

letrec {g := lambda (---)
o @ 000} oool

2.14.8 Substitutions
Formally, a substitution 0 is a finite function from variables to terms:
0 ={x1 > t1,...,x, > 1}, (2.20)

where each term #; is of the same sort as the variable x;. We say that the set of variables
{x1,...,x,} constitutes the support of . In Athena, substitutions form a distinct type of

31 This is purely for illustration purposes; a much better way to determine parity is to examine the remainder
after division by 2 (using the mod procedure in Athena).

fpmics 2016/9/20 10:19 Page 95 #119

2.14. PROGRAMMING 95

values. A substitution of the form (2.20) can be built with the unary procedure make-sub,
by passing it as an argument the list of pairs [[x; #] --- [x, #,]1]. For example:

> (make-sub [[?n zerol [?m (S ?k)11)

Substitution:
{?n:N --> zero
m:N --> (S ?k:N)}

Note the format that Athena uses to print out a substitution: {x; -=> # --- x, -=> £,}.
The support of a substitution can include variables of different sorts, e.g.:

> (make-sub [[?counter (S zero)] [?flag truell)

Substitution:
{?counter:N --> (S zero)
?flag:Boolean --> true}

It may also include polymorphic variables:
> (make-sub [[?list (:: ?head ?tail)l])

Substitution: {?list:(List 'S) --> (:: ?head:'S ?tail:(List 'S))}

The support of a substitution can be obtained by the unary procedure supp. The empty
substitution is denoted by empty-sub. A substitution § of the form (2.20) can be extended
to incorporate an additional binding x,+1 — #,4+1 by invoking the ternary procedure
extend-sub as follows:

(extend-sub € xu41 tr+1).

If we call (extend-sub 6 x r) with a variable x that already happens to be in the support
of ¢, then the new binding for x will take precedence over the old one (i.e., the resulting
substitution will map x to 7).

Substitutions can be applied to terms and sentences. In the simplest case, the result of
applying a substitution 8 of the form (2.20) to a term ¢ is the term obtained from ¢ by
replacing every occurrence of x; by #;. The syntax for such applications is the same syntax
used for procedure applications: (¢ £).’> For example:

> theta
Substitution:
{?counter:N --> (S zero)

?flag:Boolean --> true}

> (theta ?flag)

32 When we use conventional mathematical notation, we might write such an application as #(¢) instead.

fpmics 2016/9/20 10:19 Page 96 #120

96 CHAPTER 2. INTRODUCTION TO ATHENA

Term: true
> (theta (?foo = S ?counter))

Term: (= ?foo:N
(S (S zero)))

The result of applying a substitution & of the form (2.20) to a sentence p, denoted by (8 p),
is the sentence obtained from p by replacing every free occurrence of x; by ;.

In many applications, substitutions are obtained incrementally. For instance, first we
may obtain a substitution such as #; = {?a:N — (S ?b)}, and then later we may obtain
another one, for example,

6r = {?7b:N > zero}.
We want to combine these two into a single substitution that captures the information

provided by both. We can do that with an operation known as substitution composition. In
this case, the composition of 8, with 6; yields the result:

03 = {?a:N — (S zero), ?b:N — zero}.

We can think of 3 as combining the information of #; and #,. To obtain the composition of
6> with 61 in Athena, we apply the binary procedure compose-subs to the two substitutions.
In general, for any

Or={x1—>1t,....,xp > ty}

and
=1 S1,...,Vm > Sm}
we have:
(compose-subs 6 01) = {x1 = (02 11),...,X0 => (B2 1), Yiy &> Siys- - Yig & Sighs
where the set {y;,,...,yi} C {»1,...,ym} contains every variable in the support of &, that

is “new” as far as 0 is concerned, i.e., every y; whose name is not the name of any x;.

Two very useful operations on terms that return substitutions are ferm matching and
unification. We say that a term s matches a term ¢ if and only if we can obtain s from
t by consistently replacing variables in ¢ by certain terms. Thus, the term ¢ is viewed as
a template or a pattern. The variables of ¢ act as placeholders—empty boxes to be filled
by sort-respecting terms. Plugging appropriate terms into these placeholders produces the
term s. We say that s is an instance of ¢.

For example, s = (zero Plus S ?a) matches the term ¢ = (?x Plus ?y), i.e., s is an
instance of #, because we can obtain s from ¢ by plugging in zero for ?x and (S ?a) for
?y. A more precise way of capturing this relation is to say that s matches ¢ iff there exists

fpmics 2016/9/20 10:19 Page 97 #121

2.14. PROGRAMMING 97

a substitution that produces s when applied to ¢. The binary procedure match-terms effi-
ciently determines whether a term (the first argument) matches another (the second). If it
does not, false is returned, otherwise a matching substitution is produced. Matching is
a fundamental operation of central importance that arises in many areas of computer sci-
ence, from programming languages and databases to artificial intelligence. In this book,
matching will be widely used in dealing with equational proofs by means of rewriting. For
example:

> (match-terms (null union ?x) (?s1 union ?s2))

Substitution:
{?s2:Set --> ?x:Set
?s1:Set --> null}

> (match-terms (father joe) (mother ?7x))
Term: false

There is a corresponding primitive procedure match-sentences that extends this notion to
sentences. Roughly, a sentence p matches a sentence ¢ iff either both p and ¢ are atomic
sentences and p matches ¢ just as a term matches another term; or else both are complex
sentences built by the same sentential constructor or quantifier and their corresponding
immediate subsentences match recursively. In particular, when p and ¢ are quantified sen-
tences (Q x p’) and (Q y ¢'), respectively (where Q is either the universal or the exis-
tential quantifier), we proceed by recursively matching {x — v}(p")** against {y — v}(¢’),
where v is some fresh variable of the same sort as x and y, with the added proviso that
v cannot appear in the resulting substitution (to ensure that if any variables appear in a
resulting substitution, these are among the free variables of the two sentences that were
matched). Some examples:

> (match-sentences (~ joe siblings ann) (~ ?x siblings ?y))

Substitution:
{?y:Person --> ann
?x:Person --> joe}

> (match-sentences (forall ?x . ?x siblings joe)
(forall ?y . ?y siblings ?w))

Substitution: {?w:Person --> joe}

33 Recall that for any sentence p, variable v, and term #, we write {v— #}(p) for the sentence obtained from p
by replacing every free occurrence of v by ¢, taking care to rename bound variables as necessary to avoid variable
capture.

fpmics 2016/9/20 10:19 Page 98 #122

98 CHAPTER 2. INTRODUCTION TO ATHENA

We conclude with a brief discussion of unification. Informally, to unify two terms s and
t is to find a substitution that renders them identical, that is, a substitution @ such that (6 s)
and (@ ¢) are one and the same term. Such a substitution is called a unifier of s and ¢. Two
terms are unifiable if and only if there exists a unifier for them. Consider, for instance, the
two terms s = (S zero) and t = (S ?x). They are unifiable, and in this case the unifier is
unique: {?x — zero}. Unifiers need not be unique. For instance, the terms (S ?x) and ?y:N
are unifiable under infinitely many substitutions.

The binary procedure unify can be used to unify two terms (i.e., to produce a unifier for
them); false is returned if the terms cannot be unified. Note that unifiability is not the same
as matching. Neither of two terms might match the other, but the two might be unifiable
nevertheless. Athena’s procedures for matching and unification handle polymorphic inputs
as well, consistent with the intuitive understanding of a polymorphic term (or sentence) as
a collection of infinitely many monomorphic terms (or sentences).

2.15 A consequence of static scoping

Athena’s procedural and deductive languages are both statically scoped. Roughly speak-
ing, this means that the values of free identifier occurrences in procedures or methods are
determined based on the textual structure of the code. This is in contrast to dynamic scop-
ing, in which identifiers become bound to different values during execution as determined
by the (dynamic) run-time stack of procedure calls rather than the (static) structure of the
program text. Modern programming languages use static scoping in most cases because
dynamic scoping is conducive to subtle errors that are difficult to recognize and debug. For
our purposes in this textbook we need not get into all the complexities of static vs. dynamic
scoping, but it is worth noting a consequence that could seem puzzling to the novice. First,
consider the following definitions of procedures f and g:

> define (f x) := (x plus x)
Procedure f defined.

> define (g x) := ((f x) plus 3)
Procedure g defined.

> (g 5

Term: 13

Suppose we now realize we should have defined f as squaring rather than doubling x, so
we redefine it:

fpmics 2016/9/20 10:19 Page 99 #123

2.16. MISCELLANEA 99

> define (f x) := (x times x)

Procedure f defined.

> (g 5

Term: 13

Why do we still get the same result as before? Because in the earlier code, at the point
where we defined g (line 5), the free occurrence of f in the body of g referred to the pro-
cedure defined in line 1. This is a static binding, unchanged when we bind f to a new
procedure in the second definition. Thus, we must also redefine g in order to have a def-

inition that binds f to the new function, by reentering the (textually) same definition as
before:

> define (g x) := ((f x) plus 3)
Procedure g defined.
> (g 5

Term: 28

In general, if you are interactively entering a series of definitions and you then revise
one or more of them, you’ll also need to reenter the definitions of other values that refer
to the ones you have redefined. Of course, if you enter all the definitions in a file that you
then load, things are simpler: You can just go back and edit the text of the definitions that
need changing and then reload the file.

2.16 Miscellanea

Here we describe some useful features of Athena that do not neatly fall under any of the
subjects discussed in the preceding sections.

1. Short-circuit Boolean operations: 8& and | | perform the logical operations “and” and
“or” on the two-element set {true, false}. They are special forms rather than primitive
procedures precisely in order to allow for short-circuit evaluation.>* In particular, to
evaluate (&& Fp ---F,), we first evaluate Fj, to get a value V1. V] must be either true
or false, otherwise an error occurs. If it is false, the result is false; if it is true, then
we proceed to evaluate F», to get a value V2. Again, an error occurs if V3 is neither
true nor false. Assuming no errors, we return false if V5 is false; otherwise V3 is

34 Because Athena is a strict (call-by-value) language, if, say, & were just an ordinary procedure, then all of its
arguments would have to be fully evaluated before the operation could be carried out, and likewise for | |.

