fpmics 2016/9/20 10:19 Page 44 #68

44 CHAPTER 2. INTRODUCTION TO ATHENA

> clear-assumption-base
Assumption base cleared.
> assert (1 = 2)

The sentence
(=12

has been added to the assumption base.
> retract (1 = 2)

The sentence
(=12
has been removed from the assumption base.

All three of these (assert, clear-assumption-base, and retract) are top-level directives;
they cannot appear inside other code.
The last two constructs are powerful and should be used sparingly. A directive

retract p

in particular, simply removes p from the assumption base without checking to see what
other sentences might have been derived from p in the interim (between its assertion and
its retraction), so a careless removal may well leave the assumption base in an incorrect
state. This tool is meant to be used only when we assert a sentence p and then right away
realize that something went wrong, for instance, that p contains certain free variables that
it should not contain, in which case we can promptly remove it from the assumption base
with retract.

2.7 Datatypes

A datatype is a special kind of domain. It is special in that it is inductively generated,
meaning that every element of the domain can be built up in a finite number of steps by
applying certain operations known as the constructors of the datatype. A datatype D is
specified by giving its name, possibly followed by some sort parameters (if D is polymor-
phic; we discuss that in Section 2.8), and then a nonempty sequence of constructor profiles
separated by the symbol |. A constructor profile without selectors'? is of the form

( Si---Sp), 23)

consisting of the name of the constructor, ¢, along with » sorts Sy - - - S,,, where S; is the sort
of the i argument of ¢. The range of ¢ is not explicitly mentioned—it is tacitly understood

13 Selectors are discussed in Section A.5.



fpmics 2016/9/20 10:19 Page 45 #69

2.7. DATATYPES 45

to be the datatype D. That is why, after all, ¢ is called a “constructor” of D; because it
builds or constructs elements of the datatype. Thus, every application of ¢ to n arguments
of the appropriate sorts produces an element of D. In terms of the declare directive that
we have already seen, a constructor ¢ of a datatype D with profile (2.3) can be thought of
as a function symbol with the following signature:

declare c: [S;---S,1 —> D.

A nullary constructor (one that takes no arguments, so that » = 0) is called a constant
constructor of D, or simply a constant of D. Such a constructor represents an individual
element of D. The outer parentheses in (2.3) may be (and usually are) omitted from the
profile of a constant constructor.

Here is an example:

datatype Boolean := true | false

This defines a datatype by the name of Boolean that has two constant constructors, true
and false. (This particular datatype is predefined in Athena.) Thus, this definition says
that the datatype Boolean has two elements, true and false. The definition conveys more
information than that, however. It also licenses the conclusion that true and false are
distinct elements, and, moreover, that true and false are the only elements of Boolean.

The intended effect of this datatype definition could be approximated in terms of mech-
anisms with which we are already familiar as follows:

domain Boolean
declare true, false: Boolean
assert (true =/= false)

assert (forall ?b:Boolean . ?b = true | ?b = false)

Here we have made two assertions that ensure that (a) true and false refer to distinct
objects; and (b) the domain Boolean does not contain any other elements besides those
denoted by true and false. For readers who are familiar with universal algebra, these
axioms ensure that the datatype is freely generated, or that it is a fiee algebra. Given a
datatype D, we will collectively refer to these axioms as the fiee-generation axioms for D.
Roughly, the axioms express the following propositions: (a) different constructor applica-
tions create different elements of D; and (b) every element of D is represented by some
constructor application. Axioms of the first kind are usually called no-confusion axioms,
while axioms of the second kind are called no-junk axioms.

Thus, to a certain extent, a datatype definition can be viewed as syntax sugar for a
domain declaration (plus appropriate symbol declarations for the constructors), along with



fpmics 2016/9/20 10:19 Page 46 #70

46 CHAPTER 2. INTRODUCTION TO ATHENA

the relevant free-generation axioms. We say “to a certain extent” because an additional
and important effect of a datatype definition is the introduction of an inductive principle
for performing structural induction on the datatype (we discuss this in Section 3.8). For
infinite datatypes such as the natural numbers, to which we will turn next, structural induc-
tion is an ingredient that goes above and beyond the free-generation axioms, meaning that
the induction principle allows us to prove results that would not be derivable from the
free-generation axioms alone.
Here is a datatype for the natural numbers that we will use extensively in this book:

datatype N := zero | (S N)

This defines a datatype N that has one constant constructor zero and one unary constructor
S. Because the argument of S is of the same sort as its result, N, we say that S is a reflexive
constructor. Thus, S requires an element of N as input in order to construct another such
element as output. By contrast, zero, as well as true and false in the Boolean example,
are irreflexive constructors—trivially, since they take no arguments.

Unlike domains, which can be interpreted by arbitrary sets, the interpretation of a
datatype is fixed: a datatype definition always picks out a unique set (up to isomorphism).
Roughly, in the case of N, that set can be understood as given by the following rules:

1. zerois an element of N.
2. Forall n, if nis an element of N, then (S ») is an element of N.

3. Nothing else is an element of N.

The last clause, in particular, ensures the minimality of the defined set, whereby the only
elements of N are those that can be obtained by a finite number of constructor applications.

Essentially, every datatype definition can be understood as a recursive set definition
of the preceding form. How do we know that a recursive definition of this form always
succeeds in determining a unique set, and how do we know that a datatype definition can
always be thus understood? We will not get into the details here, but briefly, the answer to
the first question is that we can prove the existence of a unique set satisfying the recursive
definition using fixed-point theory; and the answer to the second question is that there are
simple syntactic constraints on datatype definitions that ensure that every datatype gives
rise to a recursive set definition of the proper form.'*

The following are the free-generation axioms for N:

(forall ?n . zero =/= S ?n)
(forall ?n ?m . S ?2n =S ?2m ==> ?n = ?m)

(forall ?n . ?n = zero | exists ?m . ?n = S 7?m)

14 For instance, definitions such as datatype D := (c D) are automatically rejected.



fpmics 2016/9/20 10:19 Page 47 #71

2.7. DATATYPES 47

You might recognize these if you have ever seen Peano’s axioms. The first two are no-
confusion axioms: (1) zero is different from every application of S (i.e., zero is not the
successor of any natural number), and (2) applications of S to different arguments produce
different results (i.e., S is injective). The third axiom says that the constructors zero and
S span the domain N: Every natural number is either zero or else the successor of some
natural number. '3

The free-generation axioms of a datatype can be obtained automatically by the unary
procedure datatype-axioms, which takes the name of the datatype as an input string and
returns a list of the free-generation axioms for that datatype:

> (datatype-axioms "N")

List: [
(forall ?y1:N
(not (= zero

(S ?2y1:N))))

(forall ?x1:N
(forall ?y1:N
(iff (= (S ?x1:N)
(S ?y1:N))
(= ?7x1:N ?2y1:N))))

(forall ?v:N
(or (= ?v:N zero)
(exists ?x1:N
(= ?v:N
(S ?x1:N)))))
]

> (datatype-axioms "Boolean")

List: [
(not (= true false))

(forall ?v:Boolean
(or (= ?v:Boolean true)
(= ?v:Boolean false)))
]

Whether or not these axioms are added to the assumption base automatically is determined
by a global flag auto-assert-dt-axioms, off by default. If turned on (see Section 2.12),
then every time a new datatype 7 is defined, its axioms will be automatically added to the
assumption base. In addition, the identifier 7-axioms will be automatically bound in the
global environment to the list of these axioms.

15 Strictly speaking, the third axiom (and other axioms of a similar form, in the case of other datatypes) can be
proved by induction, but it is useful to have it directly available.



fpmics 2016/9/20 10:19 Page 48 #72

48 CHAPTER 2. INTRODUCTION TO ATHENA

Once a datatype D has been defined, it can be used as a bona fide Athena sort; for
example, we can declare functions that take elements of D as arguments or return elements
of D as results. We can introduce binary addition on natural numbers, for instance, as
follows:

> declare Plus: [N N] -> N

New symbol Plus declared.

A number of mutually recursive datatypes can be defined with the datatypes keyword,
separating the component datatypes with &&. For example:

> datatypes Even := zero | (s1 0dd) &&
0dd := (s2 Even)

New datatypes Even and 0dd defined.

The constructors of a top-level datatype (or a set of mutually recursive datatypes) must
have distinct names from one another, as well as from the constructors of every other top-
level datatype and from every other function symbol declared at the top level. However, the
same sort, constructor, or function symbol name can be used inside two different modules.

Not all inductively defined sets are freely generated. For example, in some cases it is pos-
sible for two distinct constructor terms to denote the same element. Consider, for instance,
a hypothetical datatype for finite sets of integers:

datatype Set := null | (insert Int Set)

This definition says that a finite set of integers is either null (the empty set) or else of
the form (insert i s), obtained by inserting an integer / into the set s. Now, two sets are
identical iff they have the same members, e.g., {1,3} = {3, 1}. Hence,

(insert 3 (insert 1 null))
and
(insert 1 (insert 3 null))
ought to be identical. That is, we must be able to prove
((insert 3 (insert 1 null)) = (insert 1 (insert 3 null))). 2.4
But one of the no-confusion axioms would have us conclude that insert is injective:

(forall ?i1 ?s1 ?i2 ?s2 . (insert ?i1 ?s1) = (insert ?i2 ?s2)
==> ?i1 = ?i2 & ?s1 = ?s2)

This is inconsistent with (2.4), as it would allow us to conclude, for example, that (1 = 3).



fpmics 2016/9/20 10:19 Page 49 #73

2.7. DATATYPES 49

The preferred approach here is to define Set as a structure rather than a datatype:
structure Set := null | (insert Int Set)

A structure is a datatype with a coarser identity relation. Just like regular datatypes, a
structure is inductively generated by its constructors, meaning that every element of the
structure is obtainable by a finite number of constructor applications. This means that struc-
tural induction (via by-induction) is available for structures. The only difference is that
there may be some “confusion,” for instance, the constructors might not be injective (the
usual case), so that one and the same constructor applied to two distinct sequences of argu-
ments might result in the same value. More rarely, we might even obtain the same value by
applying two distinct constructors. It is the user’s responsibility to assert a proper identity
relation for a structure. In the set example, we would presumably assert something along
the following lines:

(forall ?s1 ?s2 . ?s1 = ?s2 <==> ?s1 subset ?s2 & ?s2 subset ?s1),

where subset has the obvious definition in terms of membership.

The unary procedure structure-axioms will return a list of all the inductive axioms that
are usually appropriate for a structure, assuming that the only difference is that constructors
are not injective. The input argument is the name of the structure:

> (structure-axioms "Set")

List: [
(forall ?yl1:Int
(forall ?y2:Set
(not (= null
(insert ?yl1:Int ?y2:Set)))))

(forall ?v:Set
(or (= ?v:Set null)
(exists ?x1:Int
(exists ?x2:Set
(= ?v:Set
(insert ?x1:Int ?x2:Set))))))
]

If the structure has other differences (most notably, if applying two distinct constructors
might result in the same value), then it is the user’s responsibility to assert the relevant
axioms as needed.



fpmics 2016/9/20 10:19 Page 50 #74

50 CHAPTER 2. INTRODUCTION TO ATHENA

2.8 Polymorphism

2.8.1 Polymorphic domains and sort identity

A domain can be polymorphic. As an example, consider sets over an arbitrary universe,
call it S:

> domain (Set S)
New domain Set introduced.

The syntax for introducing polymorphic domains is the same as before, except that now the
domain name is flanked by an opening parenthesis to its left and a list of identifiers to its
right, followed by a closing parenthesis; say, (Set S), or in the general case, (I 1 ---1,),
where [ is the domain name. The identifiers /1,. .., I, serve as sort variables, indicating
that 7 is a sort constructor that takes any » sorts Sy,...,S, as arguments and produces a
new sort as a result, namely (/ S ---S,). For instance, Set is a unary sort constructor that
can be applied to an arbitrary sort, say the domain Int, to produce the sort (Set Int).
For uniformity, monomorphic sorts such as Person and N can be regarded as nullary sort
constructors. Polymorphic datatypes and structures, discussed in Section 2.8.3, can also
serve as sort constructors.

Equipped with the notion of a sort constructor, we can define Athena sorts more pre-
cisely. Suppose we have a collection of sort constructors SC, with each sc € SC having a
unique arity » > 0, and a disjoint collection of sort variables S¥. We then define a sort over
SC and SV as follows:

+ Every sort variable y in SV is a sort over SC and SV.

» Every nullary sort constructor sc € SC is a sort over SC and SV.

o IfSy,...,S, are sorts over SC and SV, n > 0, and sc € SC is a sort constructor of arity
n, then (sc S;---S,) is a sort over SC and SV.

* Nothing else is a sort over SC and SV.

We write Sorts(SC, SV) for the set of all sorts over SC and SV.

For example, suppose that SC = {Int,Boolean, Set} and SV = {S1,S2}, where Int and
Boolean are nullary sort constructors, while Set is unary. Then the following are all sorts
over SC and SV:

Boolean
Int
(Set Boolean)



fpmics 2016/9/20 10:19 Page 51 #75

2.8. POLYMORPHISM 51

S1

(Set Int)

(Set S2)

(Set (Set Int))
(Set (Set S1))

There are infinitely many sorts over these three sort constructors and two sort variables.

Sorts of the form (s¢ Sj---S,) for n > 0 are called compound, or complex. A ground
(or monomorphic) sort is one that contains no sort variables. All of the above examples are
ground except S1, (Set S2), and (Set (Set S1)). A sort that is not ground is said to be
polymorphic.

A polymorphic domain is really a domain femplate. Substituting ground sorts for its sort
variables gives rise to a specific domain, which is an instance of the template. Intuitively,
you can think of a polymorphic domain as the collection of all its ground instances.

Formally, let us define a sort valuation t as a finite function from sort variables to sorts.
Any such 7 can be extended to a function

7 : Sorts(SC,SV) — Sorts(SC,SV)
(i.e., to a function 7 from sorts over SC and SV to sorts over SC and SV) as follows:

T(y) = 1(y)
?((SC S1---8)) = (sc ?(Sl) o '?(Sn))

for any sort variable yr € SV and sort constructor sc € SC of arity n. We say that a sort S is
an instance of (or matches) a sort Sy iff there exists a sort valuation 7 such that 7(S2) = Sj.
And we say that two sorts S| and S, are unifiable iff there exists a sort valuation 7 such that
7(S1) = 7(S7). There are algorithms for determining whether one sort matches another, or
whether two sorts are unifiable, and these algorithms are widely used in Athena’s opera-
tional semantics.

Two sorts are considered identical iff they differ only in their variable names, that is, iff
each can be obtained from the other by (consistently) renaming sort variables. It follows
that a ground sort (such as N) is identical only to itself, since it does not contain any sort
variables.

2.8.2 Polymorphic function symbols

Polymorphic sorts pave the way for polymorphic function symbols. The syntax for declar-
ing a polymorphic function symbol f is the same as before, except that the relevant sort
variables must appear listed within parentheses and separated by commas before the list of
input sorts. Thus, the general syntax form is

declare f: (I1,...,1;,) [S1---Sp,1 > S (2.5)



fpmics 2016/9/20 10:19 Page 52 #76

52 CHAPTER 2. INTRODUCTION TO ATHENA

where 11, . ..,1, are distinct identifiers that will serve as sort variables, and as before, S; is
the sort of the i argument and S is the sort of the result. Presumably, some of these sorts
will involve the sort variables. For example:

declare in: (S) [S (Set S)] -> Boolean
declare union: (S) [(Set S) (Set S)] -> (Set S)
declare =: (S) [S S] -> Boolean

The first declaration introduces a polymorphic membership predicate that takes an element
of an arbitrary sort S and a set over S and “returns” either true or false. The second
declaration introduces a polymorphic union function that takes two sets over an arbitrary
sort S and produces another set over the same sort. Finally, the last declaration introduces
a polymorphic equality predicate; that particular symbol is built-in.

Polymorphic constants can be declared as well, say:

declare empty-set: (T) [] -> (Set T)

A function symbol declaration of the form (2.5) is admissible iff (a) f is distinct from
every function symbol (including datatype constructors) introduced before it; (b) every S;,
as well as S, is a sort over SC and {/1,...,I,}, where SC is the set of sort constructors
available prior to the declaration of f; and (c) every sort variable that appears in the output
sort S appears in some input sort S;. Hence, the following are all inadmissible:

> declare g: (S) [(Set Int S)] -> Boolean
standard input:1:18: Error: Ill-formed sort: (Set Int S).
> declare g: (S) [(Set T) S]1 -> Int

standard input:1:18: Error: Ill-formed sort: (Set T).

> declare g: (S) [Int] -> S

standard input:1:25: Error: The sort variable S appears in the
resulting sort but not in any argument sort.

The first declaration is rejected because (Set Int S) is not a legal sort (we introduced Set
as a unary sort constructor, but here we tried to apply it to two sorts). The second attempt
is rejected because T is neither a previously introduced sort nor one of the sort variables
listed before the input sorts. The third error message explains why the last attempt is also
rejected.

Intuitively, a polymorphic function symbol f* can be thought of as a collection of
monomorphic function symbols, each of which can be viewed as an instance of /. The



fpmics 2016/9/20 10:19 Page 53 #77

2.8. POLYMORPHISM 53

declaration of each of those instances is obtainable from the declaration of /" by consis-
tently replacing sort variables by ground sorts. For example, the foregoing declaration of
the polymorphic predicate symbol in might be regarded as syntax sugar for infinitely many
monomorphic function symbol declarations:

declare in_Int: [Int (Set Int)] -> Boolean
declare in_Real: [Real (Set Real)] -> Boolean
declare in_Boolean: [Boolean (Set Boolean)] -> Boolean

declare in_(Set Int): [(Set Int) (Set (Set Int))] -> Boolean

and so on for infinitely more ground sorts. This is elaborated further in Section 5.6.
Polymorphic function symbols are harnessed by Athena’s polymorphic terms and sen-
tences. Try typing a variable such as ?x into Athena without any sort annotations:

> ?7x
Term: ?x:'T175

Note the sort that Athena has assigned to the input variable, namely, 'T175. This is a sort
variable. Athena generally prints out sort variables in the format 'Tn or 'Sn, where » is
some integer index. This is the most general sort that Athena could assign to the variable
?x in this context. So this is a polymorphic variable, and hence a polymorphic term. Users
can also enter explicitly polymorphic variables, i.e., variables annotated with polymorphic
sorts, writing sort variables in the form ' 7, for example:

> ?y:'T3
Term: ?y:'T177

Note that the sort that Athena assigned to ?y is 'T177, which is identical to ' T3, since each
can be obtained from the other by renaming sort variables (recall our discussion of sort
identity in the previous subsection). Here are some more examples of polymorphic terms:

> (?7x in ?y)

Term: (in ?x:'T203
?2y:(Set 'T203))

> (?a = ?b)
Term: (= ?a:'T206 ?b: 'T206)
> (?x:(Set 'T) in ?y:(Set (Set 'T)))

Term: (in ?x:(Set 'T209)



fpmics 2016/9/20 10:19 Page 54 #78

54 CHAPTER 2. INTRODUCTION TO ATHENA

?y:(Set (Set 'T209)))

In the first two examples, Athena automatically infers the most general possible polymor-
phic sorts for every variable occurrence. Also note that the common occurrence of ' 7203
in the first example indicates that Athena has inferred a constraint on the sorts of ?x and
?y, namely, that whatever sort ?x is, ?y must be a set of that sort. Likewise for the second
example: The sorts of ?a and ?b can be arbitrary but must be identical. In the third example
we have explicitly provided specific polymorphic sorts for ?x and ?y: (Set 'T) for ?x and
(Set (Set 'T)) for ?y. Athena verified that these were consistent with the signature of
in and thus accepted them (modulo the sort-variable permutation ’T <> ’T209). Observe,
however, that it is not necessary to provide both of these sorts. We can just annotate one of
them and have the sort of the other be inferred automatically, for example:

> (?x:(Set 'T) in ?y)

Term: (in ?x:(Set 'T213)
?y:(Set (Set 'T213)))

We can write sort annotations not just for variables but also for constant terms:
> (in ?x empty-set:(Set Real))

Term: (in ?x:Real
empty-set:(Set Real))

> empty-set:(Set (Set 'S))
Term: empty-set:(Set (Set 'T4395))

Any constant term can be annotated in Athena, including monomorphic ones. Athena will
just ignore such annotations, as long as they are correct:

> joe:Person
Term: joe

> (S zero:N)
Term: (S zero)

There is an easy way to check whether a term ¢ is polymorphic: Give it as input to the
Athena prompt and then scan Athena’s output for sort variables (prefixed by '). If Athena
annotates at least one variable or constant symbol in 7 with a polymorphic sort (i.e., one
containing sort variables), then ¢ is polymorphic; otherwise it is monomorphic. But there is

also a primitive unary procedure poly? that will take any term ¢ and return true or false
depending on whether or not ¢ is polymorphic.



fpmics 2016/9/20 10:19 Page 55 #79

2.8. POLYMORPHISM 55

Informally, it is helpful to think of a polymorphic term as a schema or template that
represents infinitely many monomorphic terms. For instance, you can think of the poly-
morphic term empty-set as representing infinitely many monomorphic terms, such as

empty-set: (Set Int)
empty-set: (Set Boolean)
empty-set: (Set (Set Int))

and so on. Keep in mind that the mere presence of a polymorphic symbol in a term does
not make that term polymorphic. For instance, the term (?x:Int = 3) contains the poly-
morphic symbol =, but it is not itself polymorphic. No variable or constant symbol in it has
a nonground sort, as you can verify by typing the term into Athena:

> (2x = 3)

Term: (= ?x:Int 3)

or by supplying it as an argument to poly?:
> (poly? (?x = 3))

Term: false

The presence of polymorphic function symbols is a necessary condition for a term to be
polymorphic, but it is not sufficient.

A polymorphic sentence is one that contains at least one polymorphic term, or a quanti-
fied variable with a nonground sort. Here are some examples:

> (forall ?x . ?x = ?x)

Sentence: (forall ?x:'S
(= ?7x:'S ?7x:'S))

> (forall ?x ?y . ?x union ?y = ?y union ?x)

Sentence: (forall ?x:(Set 'S)
(forall ?y:(Set 'S)
(= (union ?x:(Set 'S)
?y:(Set 'S))
(union ?y:(Set 'S)
?2x:(Set 'S)))))

> (~ exists ?x . ?x in empty-set)
Sentence: (not (exists ?x:'S
(in ?x:'S

empty-set:(Set 'S))))

Note that quantified variables can be explicitly annotated with polymorphic sorts:



fpmics 2016/9/20 10:19 Page 56 #80

56 CHAPTER 2. INTRODUCTION TO ATHENA

> (exists ?x:(Set (Set 'T)) . ?x =/= empty-set)

Sentence: (exists ?x:(Set (Set 'S))
(not (= ?x:(Set (Set 'S))
empty-set:(Set (Set 'S)))))

As with terms, a simple way to test whether an unannotated sentence is polymorphic is to
give it as input to the Athena prompt and then scan the output for sort variables. If you see
any, the sentence is polymorphic, otherwise it is monomorphic. But poly? can also be used
on sentences:

> (poly? (forall ?x . ?x = ?x))

Term: true

Also as with terms, a polymorphic sentence such as (forall ?x . ?x = ?x) canbe seen
as a collection of infinitely many monomorphic sentences, namely:

(forall ?x:Int . ?x = ?x)
(forall ?x:Boolean . ?x = ?x)
(forall ?x:(Set Int) . ?x = ?x)

and so on. This expressivity is the power of parametric polymorphism. A single polymor-
phic sentence manages to express infinitely many propositions about infinitely many sets
of objects.

2.8.3 Polymorphic datatypes

Since datatypes are just special kinds of domains, they too can be polymorphic, and
likewise for structures. Athena’s polymorphic datatypes resemble polymorphic algebraic
datatypes found in languages such as ML and Haskell. Here are two examples for poly-
morphic lists and ordered pairs:

datatype (List S) := nil | (:: S (List S))
datatype (Pair S T) := (pair S T)

The syntax is the same as for monomorphic datatypes, except that the datatype name
is now flanked by an opening parenthesis to its left and a list of distinct identifiers to
its right, followed by a closing parenthesis; e.g., (List S) or (Pair S T), or, in general,
(I I ---1I,), where [ is the name of the datatype. Just as for polymorphic domains, the
identifiers /1, . . ., I, serve as sort variables, indicating that / is a sort constructor that takes »
sorts S1,. . ., Sy as arguments and produces a new sort as aresult, (I S; ---S,). For instance,
List is a unary sort constructor that can be applied to an arbitrary sort, say the domain Int,



fpmics 2016/9/20 10:19 Page 57 #81

2.8. POLYMORPHISM 57

to produce the sort (List Int); while Pair is a binary sort constructor and can thus be
applied to any two sorts to produce a new one, e.g., (Pair Boolean (List Int)).

The profile of each constructor is the same as before: (¢ Sj - - - Sx), where ¢ is the name of
the constructor.'® Here, each S; must be a sort over all previously introduced sort construc-
tors plus the datatype that is being defined (thus allowing recursion), and the sort variables
I,...,I,. Recursive datatype definitions are quite useful and common, the definition of
lists given above being a typical example.

The notion of a reflexive constructor remains unchanged: If an argument of a constructor
c is of a sort that involves the name of the datatype of which ¢ is a constructor, then ¢
is reflexive; otherwise it is irreflexive. Every datatype must have at least one irreflexive
constructor. More specifically, we say that a definition of a datatype D is admissible if (1)
the name D is distinct from all previously introduced sorts (domains or datatypes); (2) the
constructors of D are distinct from one another, as well as from every function symbol
introduced prior to the definition of D; (3) every argument sort of every constructor of D
is a sort over SC U {D} and {/1,...,1,}, where SC is the set of previously available sort
constructors and /1, ..., 1, are the sort variables (if any) listed in the definition of D; and
finally, (4) D has at least one irreflexive constructor.

The procedures datatype-axioms and structure-axioms work just as well with poly-
morphic datatypes, for example:

> (datatype-axioms "List")

List: [
(forall ?y1:'S
(forall ?y2:(List 'S)
(not (= nil:(List 'S)
(:: ?2y1:'S
?y2:(List 'S))))))

(forall ?x1:'S
(forall ?x2:(List 'S)
(forall ?y1:'S
(forall ?y2:(List 'S)
(if (= (:: ?x1:'S
?7x2:(List 'S))
(:: ?2y1:'S
?y2:(List 'S)))
(and (= ?x1:'S ?y1:'S)
(= ?x2:(List 'S)
?7y2:(List 'S))))))))

(forall ?v:(List 'S)
(or (= ?v:(List 'S)
nil:(List 'S))

16 Also as before, the outer parentheses may be dropped when £ = 0.



2.8.4

fpmics 2016/9/20 10:19 Page 58 #82

58 CHAPTER 2. INTRODUCTION TO ATHENA

(exists ?x1:'S
(exists ?x2:(List 'S)
(= ?v:(List 'S)
(:: ?7x1:'S
?2x2:(List 'S)))))))

When D is a polymorphic datatype of arity » and S1, . . ., S, are ground sorts, then the sort
(D Si---S,) may be regarded as a monomorphic datatype. That datatype’s definition can
be retrieved from the definition of D by consistently replacing the sort variables /1,...,1,
by the sorts Si,...,S,, respectively. For example, (Pair Int Boolean) may be seen as a
monomorphic datatype Pairnt xpoolean With one binary constructor

PairintxBoolean
whose first argument is Int and whose second argument is Boolean, namely, as the datatype
datatype PairintxBoolean := (Pa@irintxBoolean 1Nt Boolean).

Likewise, (List Int) can be understood as a monomorphic datatype Listne, definable
as

datatype Listrpt := niline | (::rne Int Listrpe).

Thus, just as with other polymorphic domains, a polymorphic datatype may be viewed as
the collection of all its ground instances.

Integers and reals

Athena comes with two predefined numeric domains, Int for integers and Real for real
numbers. The domain Int has infinitely many constant symbols associated with it, namely,
all integer numerals, positive, negative, and zero:

> (?7x = 47)
Term: (= ?x:Int 47)

Note that Athena automatically recognized the sort of ?x as Int. Negative integer numerals
are written as (- n):

> (exists ?x . ?x = (- 5))
Sentence: (exists ?x:Int

(= ?x:Int
(- 5



