fpmics 2016/9/20 10:19 Page 85 #109

2.12. DIRECTIVES 85

2.12 Directives

In addition to expressions and deductions, the user can give various directives as
input to Athena. These are commands that direct Athena to do something, typi-
cally to enter new information or adjust some setting about how it processes its
input or how it displays its output. Most such directives have been mentioned
already: load (page 22), set-precedence (page 32), left-assoc/right-assoc (page 33),
define (page 40), assert (page 43), clear-assumption-base/retract (page 43), and
set-flag auto-assert-dt-axioms (page 47). In this section we describe a couple of
set-flag directives for controlling output, and the next section continues with the
overload directive for adapting function symbols to have different meanings depending
on context.

* set-flag print-var-sorts s, where s is either the string "on" or the string "of f". The
default value is "on". When set to "of ", Athena will not print out the sorts of variables.
Examples:

> set-flag print-var-sorts "off"
OK .

> (?7x = ?y)

Term: (= ?x ?y)

> set-flag print-var-sorts "on"
OK .

> (?2x = ?y)

Term: (= ?x:'T185 ?y:'T185)

» set-flag print-qvar-sorts s, where s is again either the string "on" or "of f". When
print-vars-sorts is turned off, variable sorts in the body of a quantified sentence are
not printed, but variable occurrences that immediately follow a quantifier occurrence
continue to have their sorts printed. The printing of even those sorts can be disabled by
turning off the flag print-qvar-sorts:

> set-flag print-qvar-sorts "off"
oK.

> (forall ?x . exists ?y . ?y > ?x)

fpmics 2016/9/20 10:19 Page 86 #110

86 CHAPTER 2. INTRODUCTION TO ATHENA

Sentence: (forall ?x
(exists ?y
> ?y 7x)))

Turning off variable sort printing can simplify output significantly, especially when there
are several long polymorphic sorts involved, but keeping it on can often provide useful
information.

2.13 Overloading

Say we have introduced Plus as a binary function symbol intended to represent addition
on the natural numbers:

declare Plus: [N N] -> N

While we could go ahead and use Plus in all of our subsequent proofs, it might be prefer-
able, for enhanced readability, if we could use + instead of Plus, since + is traditionally
understood to designate addition. However, + is already used in Athena to represent addi-
tion on real numbers, i.e., it is already declared at the top level as a binary function symbol
that takes two real numbers and returns a real number. This means that we cannot redeclare
+ to take natural numbers instead. If we tried to do that we would get an error message:

> declare +: [N N] -> N

Warning, standard input:1:9: Duplicate symbol---the name + is
already used as a function symbol.

We could, of course, simply define + to be Plus, but then we would lose the original
meaning of + as a binary function symbol on the real numbers. Alternatively, we could
work inside a module, M, say, and declare + directly as a function symbol with the above
signature, which would avoid any conflicts with the built-in declaration of +. But then when
working outside the module we would have to qualify + with the module name, writing
(x M.+ y) instead of (x + y).

At the top level we can get around these difficulties by overloading + so that it can stand
for P1us whenever that makes sense but revert to its original meaning at all other times:

> overload + Plus
oK.

We can now use + for both purposes: as an alias for Plus, to denote addition on natural
numbers; and also to denote the original function, addition on real numbers. Which of these
alternatives is chosen depends on the context. More specifically, it depends on the sorts of

T v S

fpmics 2016/9/20 10:19 Page 87 #111

2.13. OVERLOADING 87

the terms that we supply as arguments to +. If the arguments to + are natural numbers, then
+is understood as Plus. If, on the other hand, the arguments are not natural numbers, then
Athena infers that + is being used in its original capacity, to represent a function on real
numbers:

> (?a + zero)
Term: (Plus ?a:N zero)
> (?a + 2.5)

Term: (a:Real + 2.5)

Here, on line 1, Athena interpreted + as P1lus because, even though the variable ?a was not
annotated, the second argument was zero, a natural number. Hence, the only alternative
that was viable was to treat + as Plus. On line 5, by contrast, + could not possibly be
understood as Plus, since the second argument was 2.5, of sort Real, and hence + was
treated as it would have been normally treated prior to the overloading. If the arguments
to + are completely unconstrained, in which case both interpretations are possible, then the
most recently overloaded meaning takes precedence, in this case Plus:

> (?a + ?b)
Term: (Plus ?a:N ?b:N)

Essentially (if somewhat loosely), after a directive of the form overload /' g has been
issued, every time Athena encounters an application of the form (f ---) it tries to interpret
it as (g ---). If that fails, then it interprets the application based on the original meaning
of f.

This is not overloading in the conventional sense of the term, because we do not directly
declare + to have two distinct signatures, one of which expects two natural numbers as
inputs and produces a natural number as output. Instead, we first introduce Plus, and
then we essentially announce that + is to be used as an alias for Plus in any context in
which it is sensible to do so. Thus, for instance, (+ zero zero) actually produces the term
(Plus zero zero) as its output. So + here really is used simply as a synonym for Plus.

Note that after the overloading, + no longer denotes a function symbol. Rather, it denotes
a binary procedure that does what was described above: it first tries to apply Plus to its two
arguments, and if that fails, it then tries to apply to them whatever was previously denoted
by +, which in this case is a function symbol.”® This process can be iterated indefinitely.
For instance, after first overloading + to represent Plus, we might later overload it even
further, say, to represent : :, the reflexive constructor of the List datatype (see page 56):

28 Of course, + remains a function symbol in the current signature.

fpmics 2016/9/20 10:19 Page 88 #112

88 CHAPTER 2. INTRODUCTION TO ATHENA

1|> overload + Plus
2

3 0K.

4

s> (?a + ?b)

6

7 Term: (Plus ?a:N ?b:N)
8

9 |> overload + ::

1 0K.

13> (?a + ?b)

15 Term: (:: ?a:'T2
16 ?b:(List 'T2))

18> (?a + zero)
20 Term: (Plus ?a:N zero)
2> (?a + 3.14)

24 | Term: (+ ?a:Real 3.14)

Here, after the second overloading on line 9, + denotes a binary procedure that takes two
values v and v, and tries to apply :: to them. If that fails, then it applies to v; and v
whatever was previously denoted by +, which in this case is the procedure that resulted
from the first overloading, on line 1.

Multiple overloadings can be carried out in one fell swoop as follows:

> overload (+ Plus) (- Minus) (* Times) (/ Div)
oK.
The above is equivalent to the following four individual directives:

overload + Plus
overload - Minus
overload * Times
overload / Div

The overload directive is most useful when we are working exclusively at the top level
or inside a single module. Across different modules there is rarely a need for explicit over-
loading, since the same function symbol can be freely declared in multiple modules with
different signatures. That is, two distinct modules M and N are allowed to declare a func-
tion symbol of one and the same name, /. No conflict arises because the enclosing modules
serve to disambiguate the symbols: in one case we are dealing with M.f and in the other

fpmics 2016/9/20 10:19 Page 89 #113

2.14. PROGRAMMING 89

with N.f. So we could, for instance, develop our theory of natural numbers inside a mod-
ule named, say, N, and then directly introduce a function symbol + inside N to designate
addition, which would altogether avoid the introduction of Plus. This is, in fact, the pre-
ferred approach when developing specifications and proofs in the large. The alternative we
have described here, overload, does not involve modules and can be used in smaller-scale
projects (though it can also come in handy sometimes inside modules).

We have seen that if /' is a function symbol, then after a directive like

overload [g

is issued, / will no longer denote the symbol in question; it will instead denote a procedure
(recall that function symbols and procedures are distinct types of values). This raises the
question of how we can now retrieve the symbol f. For instance, consider the first time we
overload +:

> overload + Plus
OK

>+

Procedure: +

How can we now get ahold of the actual function symbol +? (We might need the symbol
itself for some purpose or other.) The newly defined procedure can still make terms with
the symbol + at the top, so all we need to do is grab that symbol with the root procedure,
though simple pattern matching would also work:

> (root (1 + 2))
Symbol: +

But probably the easiest way to obtain the function symbol after the corresponding name
has been redefined via overload is to use the primitive procedure string->symbol, which
takes a string and, assuming that the current symbol set contains a function symbol f of the
same name as the given string, it returns -

> (string->symbol "+")

Symbol: +

2.14 Programming

In this section we briefly survey some Athena features that are useful for programming.

