fpmics 2016/9/20 10:19 Page 113 #137

3 Proving Equalities

N THIS chapter we concentrate on equational proof, one of the most common and useful
types of inference. Our first examples will involve simple functions on natural num-
bers, like addition and multiplication. Later in the chapter we will work with list functions
like concatenation and reversal. For both natural numbers and lists, the simplest examples
involve only equality chaining, but for proofs of more interesting and useful properties
we need some form of induction, corresponding to the way in which natural numbers and
lists are defined as datatypes. Such an induction proof divides into cases, but in all of the
examples and exercises in this chapter, each proof case can be completed with equality
chaining.

3.1 Numeric equations

As we already saw in Section 2.7, we can define natural numbers in Athena as follows:
datatype N := zero | (S N)
This definition says that the values of sort N are

zero

(S zero)

(S (S zero))

(S (S (S zero)))

In general, 0 is represented by zero and to obtain the natural number » + 1 we apply the
“successor function” S to the natural number #. Put another way, the natural number # is
obtained by an n-fold application of S to zero. Furthermore—and this is a crucial point—
we define the values so obtained to be the only values that are natural numbers.'

Recall from page 30 that terms without any variables, like those in the sequence above,
are called ground terms. Terms containing variables, such as (S ?n), are called nonground
(or sometimes general) terms.

Suppose now we want to define and reason about the addition function Plus that takes
two natural numbers as inputs and returns their sum. In Athena, we first declare the func-
tion, specifying the number and sorts of its inputs (also called arguments) and the sort of
its output (or “return value”), as follows:

1 Roughly speaking, we are saying that any expression that purports to denote a natural number must have an
equivalent expression just in terms of S and zero. Later in the chapter we shall see how this fundamental property
is formalized, in conventional mathematical terms as well as in Athena.

fpmics 2016/9/20 10:19 Page 114 #138

114 CHAPTER 3. PROVING EQUALITIES

declare Plus: [N N] -> N [+]

This declaration says that Plus takes two natural numbers as inputs and produces a natural
number as output. The expression [+] at the end of the declaration overloads the built-in
symbol + so that it can be used as an alias for P1lus whenever the context allows it.

We can now write terms such as (Plus (S zero) zero), or

((S zero) Plus zero) 3.1

if we prefer infix notation. In fact, by making sure that S binds tighter (has greater prece-
dence) than Plus, with a directive like:

set-precedence S 350
we can write term (3.1) even more simply as:
(S zero Plus zero).

And since the declaration above has also overloaded the predefined operator + to designate
Plus when applied to terms of sort N, we can also write (3.1) as

(S zero + zero).

(Another way to permit the use of + for arguments of sort N is to declare our function using
the identifier + in the first place, placing the declaration inside a module to avoid conflict
with the predefined +. That’s how it is done in the Athena library, and how it will be done
in this book after the discussion of modules in Chapter 7.)

So far these are strictly matters of syntax; they do not say anything about the meaning of
a term such as (S zero + zero) other than that its sort is N (and is thus one of the values
zero, (S zero), (S S zero), ...2). At this point, for all we know, it could be any natural
number. To give Plus the intended meaning, we will define it by asserting some appropriate
universally quantified equations. But before we do that, it will be convenient to give names
to a few variables of sort N so that we don’t have to keep typing question marks:

define [x y z nm k] := [?x:N ?2y:N ?2z:N ?2n:N ?m:N ?k:N]

As we saw in the previous chapter, variables are regular denotable values, so we can now
use these names to refer to the corresponding variables:

> (x Plus S y)

Term: (Plus ?x:N
(S ?y:N))

2 Recall that consecutive applications of a unary function symbol such as S need not be separated by parentheses,
so we can write (S S S zero) rather than (S (S (S zero))). We use this convention frequently.

fpmics 2016/9/20 10:19 Page 115 #139

3.1. NUMERIC EQUATIONS 115

We can even use the defined names as arguments to quantifiers:

> (forall nm . n Plus m = m Plus n)

Sentence: (forall ?n:N

(forall ?m:N

(= (Plus ?n:N ?m:N)
(Plus ?m:N ?n:N))))
Defining variables like that is a common practice that we will follow often in this book. (In
fact, x, y, and z are already predefined at the Athena top level as the polymorphic variables
?x, ?y, and ?z, respectively.)
We now introduce the following universally quantified equations:

assert right-zero := (forall n . n + zero = n)

assert right-nonzero := (forall nm . n + Sm=3S (n + m))

Since we introduced them with assert, these equations are also entered into the global

assumption base.
Now, of course, the meaning of (S zero + zero) is determined by the equation that is

just the special case of right-zero with the ground term (S zero) substituted for n. One
way to say this in Athena, and thereby get the special-case equation into the assumption
base, is
(!instance right-zero [(S zero)l)
to which Athena responds:
Theorem: (= (Plus (S zero)

zero)
(S zero))

Thatis, 1 + 0= 1. Likewise:

> (!instance right-nonzero [zero (S zero)l)

Theorem: (= (Plus zero
(S (S zero)))

(S (Plus zero
(S zero))))
In general, the first argument to instance is a universally quantified sentence p in the

assumption base, and the second is a list L of terms.’ If

p = (forall vi---v, . @)

3 For convenience, we can also give a term ¢ by itself as the second argument to instance. That has the same
effect as passing the one-element list [#] as the second argument.

fpmics 2016/9/20 10:19 Page 116 #140

116 CHAPTER 3. PROVING EQUALITIES

and L = [#1 - - - #;], where k < n, then instance produces the sentence
(forall vipyp vy . 4)

where ¢’ results from substituting ¢ for v; ing, i =1,.. .,k.* In the first case above, n =
k=1, and in the second, n = k = 2. In the following case » =2 and k = 1, so the result
still has one quantifier:

> (!instance right-nonzero [zero])

Theorem: (forall ?v303:N
(= (Plus zero
(S ?v303:N))
(S (Plus zero ?v303:N))))

3.2 Equality chaining preview

What about the meaning of P1us for larger ground term inputs, like
(S'S zero + S S zero)?
In other words, can we now deduce that 2 + 2 = 4? Yes, and here is one way to do it:

(!chain [(S S zero + S S zero)

= (S (S S zero + S zero)) [right-nonzero]
= (S S (S S zero + zero)) [right-nonzero]
= (S S S S zero) [right-zero]

n

Here we have used chain, an Athena method® for proving equations by chaining together
a sequence of terms connected by equalities. In general,

(chain [tg = 11 [p1]1 =t [p2l = -+ =ty [pp1D)

attempts to derive the identity (¢ = ¢,), provided that each p; is in the assumption base
and each equation (#,—1 = ¢;) follows from pi,(’ typically by virtue of one of the five fun-
damental axioms of equality listed in Section 3.4, fori = 1,...,n. Here n = 3, the working

4 The substitutions are only for the fiee occurrences of the variables, namely, those not bound by quantifiers
within ¢’. Moreover, the substitutions are carried out in a safe manner, so as to avoid variable capture. These
points are explained more fully in Section 5.1.

5 This is not a primitive method; chain is defined in Athena’s library.

6 Section 5.6 will define more precisely what we mean by “follows from” in the case of first-order logic with
equality, and will also explicate the notion of an interpretation for first-order logic, but an intuitive understanding
of these concepts will suffice for now.

fpmics 2016/9/20 10:19 Page 117 #141

3.3. TERMS AND SENTENCES AS TREES 117

assumptions used at each step are p; = p» = right-nonzero and p3 = right-zero, and
Athena responds with the theorem proved:

Theorem: (= (Plus (S (S zero))
(S (S zero)))
(S (S (S (S zero)))))

We refer to each list [p;] as the justification list for the corresponding step (from #;—; to
t;), and to each p; as a justifier for the step.

The interface of chain is actually a bit more flexible than the above description sug-
gests. For example, multiple sentences may appear inside the square brackets (rather than
a single p;), and the structure of these sentences can be fairly complex (e.g., each sentence
may be a conditional equation or, say, a conjunction, rather than a simple equation). But
before examining how equality chaining works in general, we need to understand terms
and sentences as tree structures.

3.3 Terms and sentences as trees

Terms and sentences are tree-structured objects, and in some cases it makes sense to treat
them as trees explicitly. Let us start with terms. A variable or a constant symbol can be
viewed as a simple one-node tree (a /eaf node), while an application of the form (f'#1 - - - #,)
for n > 0 can be viewed as a tree with the symbol f at the root and with the trees corre-
sponding to #1,.. ., #, as its immediate subtrees, arranged from left to right in that order. For
instance, the tree corresponding to the term (Plus (S zero) (Plus (S x) (S y))) canbe
depicted as follows:

Plus

S / \Plus
Zelr‘o S / \ S|
[

?x:N ?y:N

Thus, leaves stand for simple terms (variables and constants), while internal nodes repre-
sent compound terms—applications.

fpmics 2016/9/20 10:19 Page 118 #142

118 CHAPTER 3. PROVING EQUALITIES

A two-dimensional tree representation of a compound term ¢ depicts the essential syn-
tactic structure of 7, telling us exactly what function symbols are applied to what arguments
and in what order, but without specifying how to write down ¢ as a linear string. It does
not tell us whether to use prefix, infix, or postfix notation; how to separate the arguments
from one another (with commas, periods, spaces, indentation, etc.); what characters to use
for grouping the arguments of a single application together (parentheses, square brackets,
etc.); and so on. Such notational details are decided by choosing a particular concrete syn-
tax for terms. The concrete syntax that Athena uses to output terms is the prefix notation
common in Lisp dialects. The same prefix notation is available for input as well, but one
can also use infix notation for binary function symbols, which often reduces notational
clutter, especially in combination with precedence and associativity conventions. But tree
representations, by dispensing with such details, are said to depict the abstract syntax of
terms. We will have more to say about abstract syntax in Chapter 18.

Every node in the tree representation of a term can be assigned a unique list of positive
integers [i --- iy] indicating the path that must be traversed in order to get from the root
of the tree to the node in question. That list represents the position of the node in the tree.
As an example, Figure 3.1 shows the positions of all nodes in the tree representation of
(Plus (S zero) (Plus x y)). As you can see, the position of the S node is [1], because
we get to it by traveling down the first (leftmost) edge attached to the root; the position of x
is [2 1], because we get to it by first visiting the second child of the root, and then moving
to the first child of that node; and so on. The position of the root node is always the empty
list []. These integer sequences are sometimes called Dewey paths (or Dewey positions)
because they are somewhat similar in their structure to the sequences of the Dewey decimal
classification system used by libraries to organize book collections.

Plus (]

] s/ \Plus [2]
[N

[1 1] zero 2x:N [2 11 ?2y:N [2 2]

[1

Figure 3.1

The term (Plus (S zero) (Plus ?x ?y)) depicted as a tree structure. Nodes are annotated with their Dewey
positions.

fpmics 2016/9/20 10:19 Page 119 #143

3.3. TERMS AND SENTENCES AS TREES 119

The procedure positions-and-subterms takes a term and produces a list of all positions
in the term, each paired in a sublist with the subterm at that position. For example, for the
term in Figure 3.1 we have:

> (positions-and-subterms (Plus (S zero) (Plus x y)))

List: [CC] (Plus (S zero) (Plus ?x ?y))]
[[1] (S zero)]
[L1 1] zero]
[[2] (Plus ?x ?y)]
[[2 1] ?x]
[[2 2] ?y]]

We use this procedure in an exercise in the next section, and to help implement a basic
form of equality chaining.

The following is a useful procedure that takes a term ¢ and a position / (as a list of positive
integers) and returns the subterm of ¢ that is located at position / in the tree representation
of ¢. An error will occur if there is no such subterm, that is, if / is not a valid position for z.

define (subterm t I) :=

match I {
[1=>1t
| (list-of i rest) => (subterm (ith (children t) i)
rest)
3

The primitive binary procedure ith takes a list of » > 0 values [V --- V,] and an integer
ie{l,...,n}andreturns V;.
If we only want the node at a given position, we can use the following procedure:

define (subterm-node t I) := (root (subterm t I))
> (subterm-node (x + S S zero) [2 1])
Symbol: S

Another useful procedure is replace-subterm, where (replace-subterm ¢ I ') returns
the term obtained from 7 by replacing the subterm at position / by ¢, provided that the
result is well-sorted. We leave the definition of this procedure as an exercise.

Similar ideas apply to sentences. An atomic sentence is just a term ¢, so its tree represen-
tation is that of 7. A sentence of the form (o p; ---p,), for o € {not,and,or,if,iff}, can be
viewed as a tree with the sentential constructor o at the root and the trees corresponding to
P1,---»Pn as its immediate subtrees, listed from left to right in that order. Finally, a quan-
tified sentence of the form (Q x p) can be viewed as a tree with the quantifier Q at the
root, the sole leaf x as its left subtree, and the tree corresponding to p as its right subtree.

fpmics 2016/9/20 10:19 Page 120 #144

120 CHAPTER 3. PROVING EQUALITIES

forall (]

<N

[1] ?2x:N not) [2]

l

=) [21]

N\

[211] zero S) [222]

1

?x:N [2221]

Figure 3.2

The sentence (forall ?x (not (= zero (S ?x)))) depicted as a tree. Nodes are annotated with their respective
positions.

Node positions are defined as they were for term trees. Thus, for example, the sentence
(forall x . zero =/= S x), which in prefix notation is written as

(forall x (not (= zero (S x)))),

is represented by the tree shown in Figure 3.2, whose nodes have been annotated
with their corresponding positions. Procedures subsentence, subsentence-node, and
replace-subsentence can be implemented analogously to subterm, subterm-node, and
replace-subterm; see Exercise 3.37.

3.4 The logic behind equality chaining

A firm foundation for reasoning about equalities is provided by the basic equality axioms,
which can be expressed in conventional notation as follows:

Reflexivity: Vx. x =x.

Symmetry: Vxy.x=y=y=x.

Transitivity: Vxyz . x=yAy=z=x=z

BOW NN =

Functional Substitution: For any function symbol f of » arguments,

VX1 X V1 V- XI = VA oo AXp =Y = (X1, x0) =01, 0, ¥n)-

fpmics 2016/9/20 10:19 Page 121 #145

3.4. THE LOGIC BEHIND EQUALITY CHAINING 121

5. Relational Substitution: For any relation symbol R of n arguments,

VX1 X V1 V- XL =VIA oo AXpg =Y AR, ..., x0) = RO, - -5 Vn)-

Strictly speaking, the last two are axiom schemas, because they are indexed by f and R.
Each schema has multiple axioms as instances, one for each function and relation symbol.
Axiom schemas are captured in Athena with methods; we will present the relevant methods
shortly. Because these are captured by methods, they are not sentences to be entered into
the assumption base. Rather, any one of the first three axioms and any instance of the
last two axiom schemas can be readily derived at any time by applying the corresponding
method to appropriate arguments.

For simplicity, we will refer to all five of the above simply as “axioms” (rather than
“axioms and axiom schemas”). Not all five are necessary, by the way. In fact, we can get
away with reflexivity and a variation of the relational substitution axiom known as Leib-
niz’s law. Symmetry, transitivity, and functional substitution would then become derivable
as consequences. For practical purposes, however, it is more convenient to start out with
all five.

Equational proofs in Athena are ultimately based on primitive methods corresponding
to each of the five equality axioms, namely reflex, sym, trans, fcong (“functional congru-
ence”), and rcong (“relational congruence”), as illustrated here:

domain D
declare a, b, c: D

> conclude (a = a)
(!reflex a)

Theorem: (= a a)
> conclude (a = b ==> b = a)
assume h := ()

(!'sym h)

Theorem: (if (= a b)

(= b a))
> conclude (a = b & b = ¢c ==>a = ¢)
assume (a = b & b = ¢)
(!tran (a = b) (b = ¢))

Theorem: (if (and (= a b)
(= b c))
(= a c))

declare f:[D D] -> D
declare R:[D D] -> Boolean
declare al, a2, b1, b2: D

fpmics 2016/9/20 10:19 Page 122 #146

122 CHAPTER 3. PROVING EQUALITIES

> conclude (al = bl & a2 = b2 ==> (f al a2) = (f bl b2))
assume (al = bl & a2 = b2)
(! fcong ((f al a2) (f b1 b2)))

Theorem: (if (and (= al b1)
(= a2 b2))

(= (f a1l a2)
(f b1 b2)))

> conclude (al = bl & a2 = b2 & al R a2 ==> bl R b2)
assume (al = bl & a2 = b2 & al R a2)
(!'rcong (al R a2) (b1 R b2))

Theorem: (if (and (= al b1)
(and (= a2 b2)
(R a1l a2)))
(R b1 b2))

The following is a more precise specification of these methods:

* reflex: A unary method that takes an arbitrary term ¢ and produces the sentence (¢ = 1),
in any assumption base.

* sym: A unary method that takes an equality (s = #) as an argument. If the sentence
(s = 1) is in the assumption base, then the conclusion (z = s) is produced. Otherwise
an error occurs.

* tran: A binary method that takes two equalities of the form (#; = £) and (n = 53)
as arguments. If both of these are in the assumption base, the conclusion (#; = #3) is
produced. Otherwise an error occurs.

+ fcong: A unary method that takes an equality p of the form
((f s1esn) = (f t1--ta))

as an argument. If the assumption base contains the » equalities (s; = ¢;),i=1,...,n,
then the input argument p (which represents the desired conclusion) is returned as the
result. An error will occur if some (s; = #) is not in the assumption base and s; # ;.

* rcong: A binary method that takes two atoms of the form (R s;---s,) and (R #---#,)
as arguments, where R is a relation symbol of arity #. If the assumption base contains
the first sentence, (R si - - -s,), along with the n equalities (s; = #1),..., (s, =), then
the second sentence (R 1 - - -,) is produced, otherwise an error is generated.

It is not difficult to see that the given axioms are #rue under the conventional interpre-
tation of the equality symbol as the identity relation, regardless of how we interpret other
symbols. Therefore, these five methods are sound, meaning that they can never take us

fpmics 2016/9/20 10:19 Page 123 #147

3.4. THE LOGIC BEHIND EQUALITY CHAINING 123

from true premises to false conclusions. How about completeness? Are these methods suf-
ficient for deriving all identities that follow from a given set of equations? In conjunction
with instance, the answer is affirmative. More precisely, if we have a finite set £ of uni-
versally quantified equations and are presented with a new equation that follows from E,
and we are asked to derive that equation from E, a proof could always be carried out using
a combination of applications of instance to derive substitution instances of the various
equations in £, along with applications of reflex, sym, trans, fcong, and rcong. Although
we will not prove it here (it was first proved by Birkhoff in 1935 [11]), this is an important
result that ensures that the six methods in question (the five equational methods along with
instance) constitute a complete inference system for equational logic. Any equation that
follows from E can be derived from it with a—potentially very long—sequence of applica-
tions of these few methods. However, such proofs would be operating at a very low level of
abstraction, not unlike programs written in machine language, and nontrivial cases would
require long and tedious proofs. Instead, from these basic ingredients we can derive results
that justify term rewriting, which is the kind of larger step in reasoning about equalities
that is routinely used by the chain method. We begin with:

Theorem 3.1: First Substitution Theorem

If s = & then for any function symbol /" of » arguments and terms ¢; of appropriate
sorts,

f(tla"°atk—lssatk+17°~'Jtn) :f(tlr'"th—las/atk+la"'7tn)'

PROOF: By Reflexivity, #; = t; for i ranging from 1 to n except k. The desired equation
now follows from s = s’ and Functional Substitution. []

Exercise 3.1: Athena’s primitive method fcong actually implements the First Substitution
Theorem as well as the Substitution Axiom, implicitly invoking Reflexivity as needed.
Thus, it accepts the desired equation (of the form that appears in the conclusion of the First
Substitution Theorem) and proves it, provided s = s’ is in the assumption base.
We can then apply fcong again, with the new equation now in the assumption base, to

prove an equation between larger terms. Continue the following development:

declare g:[N N] -> N

declare h:[N] -> N

declare i:[N N] -> N

assert premise := (= (i (S zero) zero)
(S (i zero zero)))

using repeated applications of fcong to prove the following goal:

fpmics 2016/9/20 10:19 Page 124 #148

124 CHAPTER 3. PROVING EQUALITIES

define goal :=
(= (h (g zero
(i (S zero)
(i (S zero) zero))))
(h (g zero
(i (S zero)
(S (i zero zero0))))))

Note: We are using prefix notation here to make it easier to see the terms as trees. a

We now generalize this idea of repeated applications of the First Substitution Theorem:

Theorem 3.2: Second Substitution Theorem

Let s and ¢ be terms, let / = [i - - - i,;] be a position that is in both terms, and sup-

pose s and ¢ are identical except at /. Let s” be the subterm of s at position /, and ¢
the subterm of ¢ at position /. If s’ = ¢/ then s = 1.

Remark: Understanding the following proof requires some familiarity with proof by
induction, one of the important proof methods to be studied in detail in this book (begin-
ning in Section 3.8). You may wish to skip it and come back to it later, accepting this
theorem for now without proof.

PROOF: By induction on the length m of I. For the basis case, m = 0, we have [=[],
hence s =5’ and ¢t = ¢, so we already have s = ¢ by the assumption s’ = ¢'. Otherwise,
assume the result for positions of length m — 1 and let s = f(s1,...,8,...,5,) and ¢ =
gt,...,ti,...,1y), as shown in Figure 3.3. By assumption, /' = g and s; = ¢; for all i from
1 to n except i1. But we also have s;, = #;,, by applying the induction hypothesis to these
terms and position I’ = [i3 - - - i,]. Then s = ¢ follows by the First Substitution Theorem. m

The First and Second Substitution Theorems are based on an equation s = ¢ between
two terms, but we can derive an even more useful proof principle that starts with a univer-
sally quantified equation, implicitly using any instance of it as the basis of an application
of the Second Theorem. It is best explained and justified using the notions of rewrite rules
and term rewriting, which are in turn based on the notions of substitutions and matching
that were described in Section 2.14.8. (It might help to review that section before continu-

ing.)

Rewrite Rules Suppose that p is a universally quantified equation of the following form:’

p=Vvi---vy.L=R, (3.2)

7 The case of n = 0, where p is an unquantified equation, is allowed. Also, as we mentioned earlier, instead of
(L = R) we could have a conditional equation (¢ ==> L = R) as the body of the rule. Conditional equations
are discussed in Section 3.14, and the full generality of the forms of the justifying sentences allowed in the chain
method is discussed in Chapter 6.

fpmics 2016/9/20 10:19 Page 125 #149

3.4. THE LOGIC BEHIND EQUALITY CHAINING 125

Figure 3.3
Illustration of the Second Substitution Theorem.

where the variables in the term L are {vi,...,v,} and those in R are a subset of
{vi,...,v,}. We call such a sentence p a rewrite rule (or, less often, a rewriting rule).
Both of the axioms for Plus, namely right-zero and right-nonzero, are in the form
of rewrite rules. If we were dealing with addition on integers rather than on natural
numbers, then we might have an axiom like this:

(forall ?i . ?i + (- ?i) = @).
But if this sentence were written instead as
(forall ?2i . @ = 71 + (- ?1)),

it would not be a rewrite rule, since the variable ?i appears on the right-hand side of the
equation but not on the left. Using such an equation for term rewriting, as defined next,
would result in spurious variables being introduced into terms.

Many of the theorems that we derive, such as left-zero below, will also be in the form
of rewrite rules and will thus be suitable for use by proof techniques that are based on
rewriting, such as chaining.

fpmics 2016/9/20 10:19 Page 126 #150

126 CHAPTER 3. PROVING EQUALITIES

(L) 0(R)

£ LA

Tllustration of the Rewriting Theorem.

Figure 3.4

In fact, most of our rewrite rules will be in a more structured form than what has been
described above: They will usually be constructor-based rewrite rules. A constructor-
based rewrite rule is of the same general form as (3.2) and adheres to the same variable
restriction, but, in addition, the left-hand side L is of the form (f s; - - -s,,), where:

a. each s; contains only variables and constructors;

b. f is not a constructor (but rather a function symbol that we are defining, such as
Plus).

Term Rewriting Let p be a rewrite rule whose body is L = R. Further, suppose s and ¢ are terms, / is a
valid position for both s and 7, the subterm s’ of s at / matches L with substitution 8, and
¢ is identical to s except at I, where #(R) occurs instead. Then we say that s rewrites or
reduces to t using p, and we call (L) and O(R) the redex and the contractum, respec-
tively. We write this relation as s —¢ ¢ [p], or simply s — ¢ [p] when @ is clear from
the context or immaterial. The relation is depicted in Figure 3.4. From this definition of
rewriting we obtain:

Theorem 3.3: Rewriting Theorem

Let p be a rewrite rule, and t — u [p]. If p then t = u.

PROOF: The sentence p implies §(L) = 8(R), and therefore ¢ = u follows by the Sec-
ond Substitution Theorem. |

fpmics 2016/9/20 10:19 Page 127 #151

3.4. THE LOGIC BEHIND EQUALITY CHAINING 127

All of this machinery is brought to bear in the following finite proof principle:

Principle 3.1: Single Rewriting Step

To prove an equation s = ¢ using p, where
p=Vvi---v,.L=R

is a rewrite rule, search s for a position / with subterm s’ such that s’ matches L; i.e.,
there is a substitution & such that s’ is 8(L). If ¢ is identical to s except at position
1, where O(R) occurs instead of s’, then s — ¢ using p, from which s = ¢ follows by
the Rewriting Theorem. Otherwise (if any of these conditions fail for position 7),
continue to the next position. If the search of all subterm positions of s fails, then
perform the same search but with the roles of s and 7 reversed. If successful, = s
is proved, from which s = ¢ follows by Symmetry.

\ J

The basic equality chaining that the chain method performs is based on the above
principle, although chain supports multiple rewrite rules in one step (and multiple redex-
contractum pairs), as well as conditional rewrite rules and indeed more complex justifying
sentences. If all of the individual steps of a chain method application

(!chain [#0 = f1 [p1] =62 [p21 = -+ = &, [pu]D)

are successful, it deduces the equation 79 = ¢, by combining the individually deduced equa-
tions using » — 1 applications of Transitivity.

We close this section with a notational convention: for a list of sentences [p ...px], we
write

s =g t[p1-..pl

(or simply s — ¢ [p1...pr] when @ is obvious or immaterial) iff s —¢ ¢ [p;] for some p;,
i €{l,...,k}. This is a natural extension of the notation s —¢ ¢ [p]. We will use it whenever
we want to indicate that a term rewrites to another term by virtue of a collection of rewrite
rules (say, a set of axioms defining a function), without having to single out specifically
which axiom is used for the rewrite step in question.

Exercise 3.2: This exercise develops a simple example of the Single Rewriting Step prin-
ciple, with

s = (Plus (S zero) (Plus (S zero) zero))

t = (Plus (S zero) (S (Plus zero zero)))

and the rule (forall x (= (Plus (S x) y) (S (Plus x y)))).
(a) Show the list of all position and subterm pairs that would be produced if the procedure

positions-and-subterms (see page 119) were applied to s . (Check your solution by
actually running the procedure or with the answer given in the solutions.)

fpmics 2016/9/20 10:19 Page 128 #152

128 CHAPTER 3. PROVING EQUALITIES

(b) Find two distinct positions /1 and /5 in s such that for both k£ = 1,2, the subterm s’ at J;
matches the left-hand side (Plus (S x) y).

(c) For each of the two distinct positions /1 and /3 in s found in the previous exercise, show
the substitution 6; by which (Plus (S x) y) matches the corresponding subterm.

(d) For which of /1 and /; in s does the Single Rewriting Step principle succeed in proving
s = 1?7 In that case, what term corresponds to 6 (R)? O

* Exercise 3.3:% Define a method basic-rewrite for proving an equation between terms
based on the Second Substitution Theorem. Let s and 7 be terms, / be a valid position in
both s and ¢, let s’ be (subterm s I), let# be (subterm ¢ I), and assume (s’ = ¢’) is in the
assumption base. Then (!basic-rewrite s I ¢) should derive (s =). Hint: The solution
can be expressed as a recursive method, corresponding directly to the inductive proof given
for the Second Substitution Theorem. a

* Exercise 3.4: Define a method 1tr-rewrite (“left-to-right rewrite”) for proving an
equation based on the Rewriting Theorem. (!1tr-rewrite s p ¢) should prove (s =¢)
if s — ¢ [p]. Hint: Base the search for a redex on procedure positions-and-subterms.
Check whether a candidate redex matches the left-hand side of the equation in p using
procedure match-terms (see page 97); when it does, derive the corresponding substitu-
tion instance of p using the instance method. Then the basic-rewrite procedure of the
preceding exercise can be used to complete the proof, if one exists for this redex. a

Exercise 3.5: Define a method rewrite for proving an equation based on the Single
Rewriting Step principle. (!rewrite s p) should prove (s = ¢) if eithers — ¢ [p] or
t = s[pl O

Exercise 3.6: Define a method chain that implements equality chaining as described
at the beginning of Section 3.2. While Athena’s chain method is quite a bit more
powerful—it also supports implication chaining, multistep-rewriting, and other exten-
sions described later—the basic version that you can now implement in terms of rewrite
should be able to handle all of the examples in this chapter (except that examples of
directional rewriting, introduced on page 133, would need to be modified to use =, with
define --> := =; define <-- := =). O

8 Starred exercises are generally more difficult than unstarred ones. Two stars indicate even greater difficulty.

fpmics 2016/9/20 10:19 Page 129 #153

3.5. MORE EXAMPLES OF EQUALITY CHAINING 129

3.5 More examples of equality chaining

Chaining equalities together to prove a new equality is one of the most useful proof meth-
ods in mathematics and computer science, as we shall see throughout this book. How-
ever, proving equations like 2 + 2 = 4 provides underwhelming evidence for this method’s
importance, so let’s move on to more interesting examples.

In preparation, we note a couple of more general properties of P1lus. We begin with the
following property:

define left-zero := (forall n . zero + n = n)

which differs from right-zero in that zero appears as the first input to Plus rather than
the second.

Exercise 3.7: Although the chain method alone is inadequate to prove left-zero (we will
see later exactly why this is so0), chain can prove instances of it, with specific ground terms
substituted for n. Prove each of the following equations using chain:

(zero + zero = zero)
(zero + S zero = S zero)
(zero + S S zero = S S zero)

Your solution may also use one or both of right-zero and right-nonzero. O

Later in the chapter we will come back and prove left-zero, but for now, we assert it into
the assumption base (treating it like an axiom):

assert left-zero
Similarly:
assert left-nonzero := (forall mn . (S n) +m =S (n + m))
Although there’s quite a bit more to say and prove about Plus, let’s continue by introduc-

ing a multiplication function, Times, that takes two natural numbers as inputs and returns
their product. First, the syntax:

declare Times: [N NJ -> N [*]

Here, we have overloaded the symbol * to mean Times when applied to N arguments. Next,
the semantics:

fpmics 2016/9/20 10:19 Page 130 #154

130 CHAPTER 3. PROVING EQUALITIES
assert Times-zero := (forall x . x * zero = zero)
assert Times-nonzero := (forall x y . x * Sy = X *y + Xx)

If we read (S n) as n+ 1, the second axiom just says
x-+D=x-y+ux

Note that * has a built-in precedence greater than that of +, so that, for example,
(x x y + z) isparsed as ((x * y) + z).
Let’s also introduce a name one and give its meaning with an equation:

declare one: N

assert one-definition := (one = S zero)

The proof of the following property:

define Times-right-one := (forall x . x * one = Xx)
provides another simple illustration of equality chaining:
conclude Times-right-one

pick-any x:N
(!chain [(x * one)

= (x * S zero) [one-definition]
= (x * zero + Xx) [Times-nonzero]
= (zero + Xx) [Times-zero]

= X [left-zeroll)

The main difference from the previous examples is that the equalities involved are not just
between ground terms; the terms include the (fresh) variable denoted by x, which, loosely
speaking, represents an arbitrary value of sort N, as indicated by the way it is introduced in
the pick-any step.

Exercise 3.8: How is Times-right-one related to right-zero? O

Here is one more property of Times, which for the moment we will treat as an axiom by
asserting it into the assumption base:

assert Times-associative := (forall x y z . (x x y) * z = x * (y * z))
As a final bit of preparation for more substantial examples of equational proof, let us

define an exponentiation function, xx. We set the precedence of ** higher than that of x
(which is predefined to be 300).

declare **: [N N] -> N [310]

For semantics, we write:

fpmics 2016/9/20 10:19 Page 131 #155

3.6. A MORE SUBSTANTIAL PROOF EXAMPLE 131
assert Power-right-zero := (forall x . x *x zero = one)
assert Power-right-nonzero := (forall x n . x **x S n = X * X %% n)

3.6 A more substantial proof example

Recall the following result from elementary algebra:
define power-square-theorem := (forall n x . (x * x) ** n = x *x (n + n))

(In more conventional notation, (x2)" = x2".) If we define the following procedure:

define (power-square-property n) :=
(forall x . (x * x) **x n = x x*x (n + n))

we can then express power-square-theorem more succinctly as the proposition that every
natural number has power-square-property:

(forall n . power-square-property n).
Athena will verify that the two formulations are identical:
> (power-square-theorem equals? (forall n . power-square-property n))
Term: true
How do we go about proving power-square-theorem? In this case it might be a good
idea to start by writing down a few specific instances of the result, to convince ourselves

that it is valid at least in those cases. For this theorem, instantiating only the variable n for
a few small values yields:

(forall x (x * X) *x* zero = X **x (zero + zero))
(forall x (x * x) *x*x S zero = x *x (S zero + S zero))
(forall x (x * x) *x* S S zero = x **x (S S zero + S S zero))
(forall x (x * x) *x S S S zero =

X ** (S S S zero + S S S zero))

These sentences can be automatically obtained by applying power-square-property to
zero, (S zero), and so on. While we could also try instantiating x so that we could check
the resulting equations with pure calculation (and indeed in Section 3.13 we discuss a
technique that automates that approach), let us instead bring proofs into play. Thus, before

fpmics 2016/9/20 10:19 Page 132 #156

132 CHAPTER 3. PROVING EQUALITIES

trying to prove power-square-theorem in its most general form, let’s see if we can prove

some of its above instances. The proof of (power-square-property zero) is simple:
conclude power-zero-case := (power-square-property zero)
pick-any x:N
(!chain [((x * x) *x zero)
= one
= (x ** zero)
= (x ** (zero + zero))

[Power-right-zero]
[Power-right-zero]
[right-zeroll)

Forn zero), first consider the following proof:

(s

conclude power-one-case := (power-square-property (S zero))
pick-any x:N
(!combine-equations

(!chain [((x * x) ** S zero)

= ((x * x) * (x * x) ** zero) [Power-right-nonzero]

= ((x * x) * one) [Power-right-zero]

= (x * x) [Times-right-onel])
(!chain [(x ** (S zero + S zero))

= (x **x (S (S zero + zero))) [right-nonzero]

= (x ** (S S zero)) [right-zero]

= (x * (x ** S zero)) [Power-right-nonzero]

= (x * (x * (x **x zero))) [Power-right-nonzero]

= (x * x * one) [Power-right-zero]

= (x * Xx) [Times-right-onell))

The structure of this proof, combining two applications of chain, illustrates a frequently
useful variation of equality chaining. Instead of a single chain of equations, we first write
a chain in which we start with the left-hand side of the equation we want to prove, at each
step using some axiom or other equation in a lefi-to-right direction. That is, we match the
equation’s left-hand side to some subterm of the current term, replacing it with the right-
hand side. Then we work in the same manner starting with the right-hand side, again using
axioms and other equations in a left-to-right direction. Diagrammatically:

50

\

S1

to

/

h

N
\

Sn

If we can rewrite each side of the equation we are trying to prove down to the very same

term, then we can combine the two chain conclusions to obtain the proof. The method
combine-equations does just that:

Im

fpmics 2016/9/20 10:19 Page 133 #157

3.6. A MORE SUBSTANTIAL PROOF EXAMPLE 133

(!combine-equations (so = s,) (Yo = tm))

proves (so = fo) when both (so = s,) and (#o = t,,) are in the assumption base and s, and
t, are identical.

In addition, chain allows the direction of rewriting to be indicated on each step: Instead
of an equality symbol between two terms, either --> or <-- can be used. If --> is used,
chain only attempts to rewrite left-to-right: #; — ¢#;1; and if <-- is used, it only attempts
to rewrite right-to-left: (z;1-1 — #). If = is specified, chain first tries left-to-right, and if that
fails, it tries right-to-left.

Note that in right-to-left rewriting, as defined here, it is not the equation within p;, say
L; = R;, that is reversed. That must be avoided, as there might be variables in Z; that do not
occur in R;. (Recall the requirement that the variables of the right-hand side of the equation
must be a subset of those of the left.)

For example, every equality symbol in the preceding proof of power-one-case could be
replaced by -->, and the proof of power-zero-case could be written as follows:

conclude (forall x . (x * X) *x zero = X ** (zero + zero))
pick-any x:N
(!chain [((x * x) *xx zero)

--> one [Power-right-zero]
<-- (x *x zero) [Power-right-zero]
<-- (x ** (zero + zero)) [right-zeroll)

Thus, in the original power-zero-case proof, where = was used, chain tries to do the
second step using Power-right-zero left-to-right and fails, but it succeeds in using it right-
to-left, and likewise for the third step.

A fair question at this point is: Do we really need combine-equations? Why not write a
single application of chain? For example, instead of

(!combine-equations
('chain [so --> s1 [p1] --> s2 [p2] -=-> -+ =-=> 5, [p,1])
(!chain [t --> #1 [q1] --> to [q2] -=> -+ =-=> 1ty [gn11))

we could write a single chain in which we reverse the order of the second sequence of
chain links:

('chain [so --> s1 [p1] --> s2 [p2] -=-> -+ =-=> 5, [py]
<-= ty—1 [gmd <-- - <-- 11 [q2] <-- 1ty [q111)

Though possible, it is often more difficult to find the correct sequence of right-to-left proof
steps to get from the term s, (Which must be identical to #,,) to the desired term 7y than it
is to find the separate chains working down to a common term using only (or primarily)
left-to-right rewrites. In this book, we have a goal more important than succinctness: We
want to illustrate and promote good strategies for finding proofs and writing them down in

fpmics 2016/9/20 10:19 Page 134 #158

134 CHAPTER 3. PROVING EQUALITIES

a clear, easy-to-understand style. The strategy of rewriting both sides to a common term
often leads to a successful proof more easily than by trying to construct one as a single
chain of rewrites, and the proof is usually easier for someone else to read and understand.

Thus, we will usually avoid writing equality proofs as single chains, restricting that
practice to cases where (1) the proof can be done just with left-to-right rewriting anyway,
or (2) only a few right-to-left rewriting steps are used, and they are only applied to fairly
simple terms, as in our proof above ofthe n = zero case. Otherwise, we will tend to write
two chains and combine them, as in the n = (S zero) case.

Exercise 3.9: Modify the given proof of power-one-case to use a single application of
chain. Indicate the direction of each rewrite with --> or <-- instead of just using = signs.
Verify that the resulting proof works. a

3.7 A better proof

The proof given for power-one-case, whether written with one chain application or two, is
longer than it needs to be. It can be shortened by taking advantage of the power-zero-case
theorem, as follows:

conclude (forall x . (x * x) *x S zero = x ** (S zero + S zero))
pick-any x:N
(!combine-equations
(!chain [((x * x) ** S zero)

-=> ((x * x) * ((x * x) ** zero)) [Power-right-nonzero]

--> ((x * x) * (x **x (zero + zero))) [power-zero-casel]

--> (x * x * x *x (zero + zero)) [Times-associativel])
(!chain [(x *x (S zero + S zero))

--> (x *x (S (S zero + zero))) [right-nonzero]

-=> (x **x (S (S (zero + zero)))) [left-nonzero]

-=-> (x * (x *x* (S (zero + zero)))) [Power-right-nonzerol]

--> (x * x * x *x (zero + zero)) [Power-right-nonzero]l]))

With this change, the proof is not just shorter than the previous one; it has a structure that
can be generalized to prove the theorem for any value of n. To see this, note that the zero
that appears in the (S zero) term in the theorem itself and throughout the proof never
plays any role in the proof. (For example, neither right-zero nor Times-zero-axiom or
Power-right-zero is ever used.) We can take advantage of this observation most easily if
we encapsulate the proofin a method, as follows:

define power-square-step :=
method (n)
let {previous-result := (power-square-property n)}
conclude (power-square-property (S n))
pick-any x:N
(!combine-equations

fpmics 2016/9/20 10:19 Page 135 #159

3.7. A BETTER PROOF 135

(!chain [((x * x) *x S n)

-=> ((x * x) * ((x *x x) *x*x n)) [Power-right-nonzero]

-=> ((x * x) * (x **x (n + n))) [previous-result]

-=> (x * x * (x *x (n + n))) [Times-associativell)
(!chain [(x ** (S n + S n))

-=> (x ** (S (S n + n))) [right-nonzero]

-=> (x ** (S'S (n + n))) [left-nonzero]

-=> (x * (x ** (S (n + n)))) [Power-right-nonzero]

--> (x * x * (x *% (n + n))) [Power-right-nonzeroll))

This method definition does not itself prove a theorem, but a successful call of it does.
In particular, if we apply this method to any specific natural number #, we will obtain the
theorem

(power-square-property (S n)),

provided that (power-square-property n) is already in the assumption base, which is
required for the appeal to previous-result in the body of the method to succeed. Hence
the name, power-square-step, indicating the “stepping” of power-square-property from
one natural number to the next. Let’s also encapsulate the previously given proof of the
n = zero case in a separate method, power-square-base, which needs no argument:

define power-square-base :=
method ()
conclude (power-square-property zero)
pick-any x:N
(!chain [((x * x) *x zero)

= one [Power-right-zero]
= (x **x zero) [Power-right-zero]
= (x *x (zero + zero)) [right-zerol])

Then the following sequence of calls could be extended to obtain the proof of
(power-square-property n) for any natural number #:
(! power-square-base)

(! power-square-step zero)
(! power-square-step (S zero))

Exercise 3.10: Verify in an Athena session that the above sequence of calls does prove
(power-square-property n) for n = zero, (S zero), (S S zero),and (S S S zero). O

fpmics 2016/9/20 10:19 Page 136 #160

136 CHAPTER 3. PROVING EQUALITIES

3.8 The principle of mathematical induction

At this point we have proved a few special cases of power-square-theorem, and we can
even imagine repeatedly invoking power-square-step to eventually obtain the proof for
any given n. In Athena we could even program an iterative or recursive proof method that
carries out all of the proofs up to the desired natural number, which in fact we’ll do later,
mainly as an illustration of Athena’s proof-programming facilities. While that is probably
enough to convince us of the validity of power-square-theorem,” we still don’t have a
formal proof of it in its general form, with n universally quantified. But we do now have
the main ingredients of a proof, namely our power-square-base and power-square-step
methods. To complete the job, we now invoke a fundamental proof method known as the
principle of mathematical induction. As we will see, this principle does not apply only to
sentences about natural numbers, but the form it takes for the natural numbers is one of the
most important, and is exactly what we need here:

Principle 3.2: Mathematical Induction for Natural Numbers

To prove V n . P(n) where n ranges over the natural numbers, it suffices to prove:

1. Basis case: P(0).
2. Induction step:¥ n . P(n) = P(n+ 1).

In the induction step, the antecedent assumption P(n) is called the induction
hypothesis.

This principle is embodied in Athena’s by-induction proof construct. We can use it to
prove power-square-theorem as follows:

by-induction power-square-theorem {
zero => (!power-square-base)
| (S n) => (!power-square-step n)

}
The keyword by-induction is followed by the sentence to be derived, which is a goal of
the form
Vn:N.Pn),
followed by a number of clauses, enclosed in curly braces and separated by |, expressing

the cases that together are sufficient to complete the proof. There are usually two clauses
(there can be more): one that expresses the basis case, corresponding to P(0), and the other

9 In Section 3.13 we will see another technique that can help to convince us that a conjecture p is true without
having a proof for it: the falsify procedure.

fpmics 2016/9/20 10:19 Page 137 #161

3.8. THE PRINCIPLE OF MATHEMATICAL INDUCTION 137

the induction step (or “inductive step”), corresponding to
Vn.Pn)=Ph+1).

Each clause is essentially a pair consisting of a constructor pattern z; that expresses one of
the cases of the inductive argument, and a corresponding subproof D;. The arrow keyword
=> separates 7; from D;. The subproof D; will be evaluated in the original assumption
base augmented with all appropriate inductive hypotheses. There may be zero inductive
hypotheses if the pattern z; corresponds to a basis case.

The induction-step sentence for our example can be written in Athena as follows:

(forall n . power-square-property n ==> power-square-property (S n))

If we were trying to prove this sentence from scratch, without the benefit of by-induction,
we could do it with a proof along the following lines:
pick-any n:N
assume induction-hypothesis := (power-square-property n)

conclude (power-square-property (S n))
(! power-square-step n)

But with by-induction it is not necessary to write this much detail. Essentially, Athena
automatically takes care of the first three steps: the pick-any, assume, and conclude. The
pick-any identifiers will be all and only those identifiers that occur as pattern variables
in 7;. These identifiers will be bound to freshly generated variables of the appropriate
sorts throughout the evaluation of D;, obviating the need for an explicit pick-any. And the
inductive hypotheses will be automatically constructed and inserted into the assumption
base for you (temporarily, only while evaluating the subproof D;), thus obviating the need
for an explicit assume. So all D; needs to do is to derive the result P(n + 1). Athena will
then check that the produced result is of the right form, which also avoids the need for an
explicit conclude.

Exercise 3.11: Verify in Athena that the above proof derives the induction step, and that
the by-induction proof before that derives power-square-theorem. O

We expressed proof principle 3.2 in informal notation, writing, for example, V n . P(n)
instead of using Athena notation. But what exactly is property P? Perhaps the best way
to think of it is as a unary procedure that takes a natural number term ¢ and produces a
sentence. We can define such a procedure directly in Athena and use it to drive the entire
workflow of an inductive proof, as outlined in the following schema:

Start by defining a unary ‘‘property procedure'
define (P t) := ...

Then use it to define a goal which says that

fpmics 2016/9/20 10:19 Page 138 #162

138

every object has this property:

define goal := (forall n:N . P n)

Finally, prove the goal by induction:

by-induction goal {
zero => conclude (P zero)
(!basis-case ...)

| (n as (S m)) =>

conclude (P n)
(!induction-step ...)

}

CHAPTER 3. PROVING EQUALITIES

Here the assumption base contains
the inductive hypothesis (P m).

where basis-case and induction-step are methods that may take any number of argu-

ments, depending on the situation.

In this particular example, the procedure encoding the property of interest was

power-square-property:

define (power-square-property n) :=
(forall x

(x * X) ** n = x *x (n + n))

This simple procedure can be applied to an arbitrary term ¢ of sort N and will produce a
sentence essentially stating that power-square-theorem holds for #:

> (power-square-property zero)

Sentence: (forall ?x:N
(= (xx (Times ?x:N ?x:N)
zero)
(** ?7x:N
(Plus zero zero))))

> (power-square-property (S zero))

Sentence: (forall ?x:N
(= (**x (Times ?x:N ?x:N)
(S zero))
(** ?7x:N
(Plus (S zero)
(S zero)))))

> (power-square-property ?k)

Sentence: (forall ?x:N
(= (*x*x (Times ?x:N ?x:N)
?k:N)
(** ?2x:N
(Plus ?k:N ?k:N))))

fpmics 2016/9/20 10:19 Page 139 #163

3.8. THE PRINCIPLE OF MATHEMATICAL INDUCTION 139

But it is not necessary to adhere to this style of defining property procedures for each
inductive proof. Neither is it necessary to define proof methods like power-square-base
and power-square-step in order to use by-induction. We can simply write out the proofs
of the basis case and induction step inline. For a simpler example of this approach, let us
take a property that we defined earlier in the chapter:

define left-zero := (forall n . zero + n = n)

There we asserted it into the assumption base, but now let us prove it, using by-induction
and inline proofs:

by-induction left-zero {
zero => conclude (zero + zero = zero)
(!chain [(zero + zero) --> zero [right-zeroll)
| (n as (S m)) =>
conclude (zero + n = n)

let {induction-hypothesis := (zero + m = m)}
(!chain [(zero + S m)
--> (S (zero + m)) [right-nonzero]
--> (S m) [induction-hypothesis]])

}

The principal advantage of writing the subproofs inline is that it requires less prepara-
tion. As with ordinary programming, however, when “proof code” gets larger it may be
worth the extra trouble to encapsulate it in methods. Then the proof of the basis case can
be tested even before attempting to write down the proof of the induction step. Similarly,
the proof of the induction step can be separately tested, either with successive applica-
tions to zero, (S zero), (S S zero), etc., or in the manner shown above for the induc-
tion step for power-square-theorem.!? Similar remarks apply to defining procedures like
power-square-property; while not necessary, they are often useful in making our proofs
more structured.

3.8.1 Different ways of understanding mathematical induction

With this simple proof of left-zero at hand, let’s return to a point we alluded to at the
beginning of the chapter, namely that the only natural number values are those that can
be obtained by starting with zero and applying S some finite number of times. One way
to understand the principle of mathematical induction for natural numbers is that it says
precisely the same thing. Why? Because:

1. For any value n that is obtained by starting with zero and applying S some finite number
of times, we can prove P(n) by starting with the basis case and applying the induction
step the same number of times; and

10 Another, more general approach to testing partial proofs will be introduced in Section 4.7.

fpmics 2016/9/20 10:19 Page 140 #164

140 CHAPTER 3. PROVING EQUALITIES

2. the principle says that just proving the basis case and the induction step is sufficient to
prove P for all natural numbers.

As another aid to intuition about mathematical induction, consider what would happen if
we posited a natural number called, say, unnatural, that we assume is not equal to any of
the values generated by zero and S. Consider then, once again, left-zero. Is it still valid?
We proved it, but our proof, using the principle of mathematical induction, did not consider
the possibility that there could be natural numbers other than those that can be generated
from zero and S. And, without further information, we cannot conclude

(zero + unnatural = unnatural),

so the property isn’t necessarily valid. We might in fact have (zero + unnatural = zero)
or (zero + unnatural = one), or any other value besides unnatural, and that would inval-
idate left-zero.

Exercise 3.12: Joe Certain claims that he can prove
(zero + unnatural = unnatural)
using the fact that P1lus satisfies a commutative law:

(forallmn . m+ n =n + m).

Thus:
(!chain [(zero + unnatural)
--> (unnatural + zero) [Plus-commutative]
--> unnatural [right-zeroll)

What’s wrong with Joe’s “proof™? After all, one can prove Plus-commutative using math-
ematical induction; see Exercise 3.20. In answering, assume that unnatural has somehow
been declared, and in such a way that we do not get a sort-checking error with any of
the terms in the above proof (i.e., your answer shouldn’t simply be that unnatural is an
undefined identifier or that there is a sort error). O

Here is still another angle on mathematical induction, this time from the point of view
of defining datatypes like N. Recall that in Athena, N is introduced with the following defi-
nition:

datatype N := zero | (S N)

which can be read as “Sort N consists of all values, and only those values, recursively gen-
erated by the constructors zero and S.” The values in question are called canonical terms.
We will have more to say about these in Section 3.10, but in general, a canonical term is
defined as a term that contains only constructors and/or numerals of sort Int or Real and/or
meta-identifier constants of the form ' /.

fpmics 2016/9/20 10:19 Page 141 #165

3.9. LIST EQUATIONS 141

It is this datatype definition that determines by-induction’s requirements for proof
clauses: when the first universally quantified variable of the stated goal is of sort N,
by-induction requires subsequent clauses that “cover” all possible values that can be gen-
erated using constructors zero and S.

Exercise 3.13: In Athena, experiment with a declaration of a datatype N' that differs from
N in having an additional value, unnatural:

datatype N' := zero' | unnatural | (S' N)

Which of the proofs in this chapter (to this point) would still work if N is replaced by N,
zero by zero',and Sby S'? O

3.9 List equations

We now turn to a different class of equations, those involving /ists rather than natural
numbers. We will introduce lists as a datatype with two constructors, nil and : :, which are
analogous to the natural number constructors zero and S, respectively. (The : : constructor
is adopted from similar usage in ML and is pronounced “cons” in the tradition of lists
in Lisp and other functional programming languages.) We will see how useful functions
on lists, such as join and reverse, can be precisely defined with equational axioms and
how further properties can be derived from these axioms. Since the axioms and additional
properties are all stated as universally quantified equations, like those concerning natural
numbers, we already have at hand the necessary proof methods—equality chaining and
induction. We will see that equational chaining works for lists exactly as it does for natural
numbers, and that induction requires only a minor adjustment to account for the difference
in constructors.

To begin, we introduce lists in Athena with a datatype definition, first in a form in which
the list elements are natural numbers:

datatype N-List := nil | (:: N N-List)

Thus, the constructor nil takes no arguments and the constructor : : takes two: a natural
number, and, recursively, an N-List. Here are a few ground terms of this sort:

nil

(one :: nil)

(zero :: nil)

(zero :: S zero :: S S zero :: S S S zero :: nil)
(one :: zero :: nil)

(one :: zero :: S one :: nil)

fpmics 2016/9/20 10:19 Page 142 #166

142 CHAPTER 3. PROVING EQUALITIES

We interpret nil as the empty list (that contains no elements) and (x : : L) as the list whose
first element is x and whose remaining elements, if any, are those of list L. (Borrowing
from Lisp terminology, we often say that (x :: L) is the result of “consing” x onto L.) So
the last example has one as its first element, zero as its second element, and (S one) as its
third and final element.

This interpretation is reflected in the definition of the first list function we will
study, join, for concatenating two lists. By concatenation we mean that the result of
(L1 join L2) is a list that begins with the elements of list L1, in the same order as in
L1, followed by the elements of L2, in the same order as in L2.

define [L L' L1 L2 L3] :=
[?L:N-List ?L':N-List ?L1:N-List ?L2:N-List ?L3:N-List]

declare join: [N-List N-List] -> N-List [++]

We defined some handy variable names to avoid having to type variables in their fully
explicit form (preceded by question marks) in what follows, and we also introduced ++ as
an alias for the function symbol join.

We want : : to bind tighter than ++ (to make sure, e.g., that (x::L1 ++ L2) is understood
as the join of x: :L1 and L2 rather than the result of consing x onto the join of L1 and L2),
so we give a higher precedence to : : with the following directive:

set-precedence :: 150

We now introduce two axioms that define concatenation:

assert left-empty := (forall L . nil ++ L = L)
assert left-nonempty := (forall x L1 L2 . x::L1 ++ L2 = x::(L1 ++ L2))

With the previous definitions for natural-number functions such as Plus and Times, we
were able to rely on a lot of experience. Lists, by contrast, are likely not as familiar, so let’s
make sure we understand how these axioms define join. The first axiom states that the list
produced by joining nil and L is identical to L.

The second axiom can be read as follows: By consing x to a list L1 and then joining the
result with a list L2, we get the same list that we would get by first joining L1 and L2 and
then consing x to the result. Figure 3.5 illustrates this relation. The left part of the diagram
depicts the computation of (x::L; ++ L) and the right part that of (x:: (L; ++ Ly)). We
see that the results are identical.

Besides holding up defining axioms to scrutiny and drawing diagrams, it is also helpful
to use the axioms to compute the function for a few ground term inputs, such as

(one::zero::nil ++ one::zero::S one::nil).

We can reduce such a ground term to one that only involves :: and nil by applying the
join axioms in a chain of equalities:

fpmics 2016/9/20 10:19 Page 143 #167

3.9. LIST EQUATIONS

l

join

2

Figure 3.5
Tllustration of the second axiom for list concatenation.

143

A

join

VA

> (!chain [(one::zero::nil ++ one::zero::S one::nil)
= (one::(zero::nil ++ one::zero::S one::nil)) [left-nonempty]
= (one::zero::(nil ++ one::zero::S one::nil)) [left-nonempty]

= (one::zero::one::zero::S one::nil)

Theorem: (= (join (:: one
(:: zero nil))

(:: one

(:: zero
(:: (S one)
nil))))
(:: one
(:: zero
(:: one
(:: zero
(:: (S one)
nil))H>)H))

[left-empty]])

Carrying out such equality proofs and examining the results provides additional evidence
that the axioms for join give it the meaning we informally prescribed for it. (A more
direct computational way to obtain such evidence—without constructing proofs—will be
introduced in Section 3.10.) But still another way to bolster our confidence is to state, as
conjectures, more properties that we intuitively expect a list concatenation function to have.
The simplest such property is one like the first axiom, but with nil as the second argument:

fpmics 2016/9/20 10:19 Page 144 #168

144 CHAPTER 3. PROVING EQUALITIES

define right-empty := (forall L . L ++ nil = L)

Note the analogy with the natural number function Plus, with nil now playing the role of
zero: We had an axiom

assert right-zero := (forall n . n + zero = n),
and we later stated and proved
define left-zero := (forall n . zero + n = n).

If we can prove right-empty we will have completed the analogy (except that our list
axiom and property have nil in the first and second arguments of join, respectively, the
reverse of what we had with zero for P1us).

We cannot prove right-empty just by equality chaining, since neither of our axioms can
be used to rewrite one side of its equation to the other. But as we did with Plus, let’s see
what happens with a few ground term inputs to join when its second argument is nil. For
example:

(!chain [(one::nil ++ nil)

= (one::(nil ++ nil)) [left-nonempty]
= (one::nil) [left-empty]])

(!chain [(one::zero::nil ++ nil)

= (one::(zero::nil ++ nil)) [left-nonempty]
= (one::zero::(nil ++ nil)) [left-nonempty]
= (one::zero::nil) [left-empty]])

(!chain [(S one::one::zero::nil ++ nil)

= (S one::(one::zero::nil ++ nil)) [left-nonempty]
= (S one::one::(zero::nil ++ nil)) [left-nonempty]
= (S one::one::zero::(nil ++ nil)) [left-nonempty]
= (S one::one::zero::nil) [left-empty]l])

In each case, we verify that the result computed by join is the same as its first argument,
and we strongly suspect this must be true for lists of any length. But if we continued this
pattern, then to verify right-empty for a list of length » we would need a calculation of
length n. We can do better by noting that we can use the result for length # in the proof
for length n + 1. The following method definitions and evaluations are analogous to those
of power-sqare-base and power-square-step in Section 3.7, but they are a little more
complicated due to the extra argument for the list element in the : : constructor.
define (join-nil-base) :=

conclude (nil ++ nil = nil)
(!chain [(nil ++ nil) = nil [left-emptyl])

define (join-nil-step IH x L) :=
conclude (x::L ++ nil = x::L)

fpmics 2016/9/20 10:19 Page 145 #169

3.9. LIST EQUATIONS 145

(!chain [(x::L ++ nil)

= (x::(L ++ nil)) [left-nonempty]
= (x 2 L) [IHID

We now have:

> define p@ := (!join-nil-base)

Theorem: (= (join nil nil)
nil)

Sentence p@ defined.

> define pl1 :=
pick-any x
(!join-nil-step p@ x nil)

Theorem: (forall ?x:N
(= (join (:: ?x:N nil)
nil)
(:: ?x:N nil)))

Sentence pl1 defined.

> define p2 :=
pick-any x:N y:N
(!join-nil-step pl1 x (y::nil))

Theorem: (forall ?x:N
(forall ?y:N
(= (join (:: ?x:N
(:: ?y:N nil))
nil)
(:: ?x:N
(:: ?2y:N nil)))))

Sentence p2 defined.

> define p3 :=
pick-any x:N y:N z:N
(!join-nil-step p2 x (y::z::nil))

Theorem: (forall ?x:N
(forall ?y:N
(forall ?z:N
(= (join (:: ?x:N
o ?y:N
(:: ?z:N nil)))
nil)
(:: ?x:N
(:: ?y:N

fpmics 2016/9/20 10:19 Page 146 #170

146 CHAPTER 3. PROVING EQUALITIES

(:: ?z:N nil)))))))
Sentence p3 defined.

The pattern of these proofs suggests that we could prove right-empty in full generality
by mathematical induction, perhaps by reformulating the property in terms of the length of
the first list, which is a natural number. In fact, however, we need no such reformulation;
we can prove it directly. In Athena, the following proof works:

> by-induction right-empty {
nil => (!join-nil-base)
| (h::t) => let {IH := (t ++ nil = t)}
(!'join-nil-step IH h t)
3

Theorem: (forall ?L:N-List
(= (join ?L:N-List nil)
2L:N-List))

or, writing the proofs of the nil and : : cases inline:

> by-induction right-empty {
nil => (!chain [(nil ++ nil) = nil [left-empty]])
| (h::t) =>
let {IH := (t ++ nil = t)}
conclude (h::t ++ nil = h::t)
(!chain [(h::t ++ nil)
(h :: (t ++ nil)) [left-nonempty]
(h::t) [IHID)

3
Theorem: (forall ?L:N-List
(= (join ?L:N-List nil)
2L:N-List))

The way by-induction works for lists is based on the following:

Principle 3.3: Mathematical Induction for Lists of Natural Numbers

To prove V L . P(L) where L ranges over lists of natural numbers, it suffices to
prove:

1. Basis case: P(nil).
2. Inductionstep: ¥ L . P(L) =V x.P(x::L).

In the induction step, the antecedent assumption P(L) is called the induction
hypothesis, and x ranges over natural numbers.

fpmics 2016/9/20 10:19 Page 147 #171

3.9. LIST EQUATIONS 147

So we have seen two flavors of mathematical induction, for natural numbers and for lists
of natural numbers. Both are supported by Athena’s by-induction proof form. The way
by-induction adapts to different datatypes is through the information supplied in datatype
definitions about the given constructors. Thus, from

datatype N-List := nil | (:: N N-List),

by-induction deduces that it must expect clauses corresponding to at least two cases, one
corresponding to nil and one corresponding to ::. The nil case is called a basis case
because nil is an irreflexive constructor that takes no argument of the datatype being
defined; there would be more than one basis case if there were more such constructors.
The : : case, since : : does take an argument of the datatype being defined, corresponds to
an induction step (or “inductive step”), and by-induction temporarily assumes an appro-
priate inductive hypothesis for the duration of the proof given in that clause. The general
evaluation semantics of by-induction are discussed in Appendix A.3.

Exercise 3.14: Reformulate the inductive proof of right-empty in the property-procedure
style described in Section 3.8. a

3.9.1 Polymorphic datatypes

Before going on to further examples of proofs about list functions, it should be noted
that none of the axioms or proofs so far have depended in any way on the sort of the list
elements. In place of N, we could have used any sort, and everything other than the actual
values in ground terms would be the same. So, for example, if we defined

datatype Boolean-List := nilb | (consb Boolean Boolean-List)

then we could repeat all of the development by replacing any N ground values with true
or false; nothing else would need to change. But such repetition is something we should
avoid if possible; writing proofs is hard enough without having to repeat them over and
over again for different sorts! Fortunately, we can avoid it by issuing declarations and
definitions with sort parameters, as discussed in Section 2.8:

datatype (List S) := nil | (:: S (List S))
declare join: (S) [(List S) (List S)] -> (List S) [++]

(Note that (List S) is predefined in Athena and in practice there would be no need to
actually issue the above definition.) As a convenience, we define a few general (polymor-
phic) variable names, as well as some specifically for polymorphic lists; and we set the
precedence level of : : to 150:

fpmics 2016/9/20 10:19 Page 148 #172

148 CHAPTER 3. PROVING EQUALITIES

define [x y z x1 x2 h h1 h2] := [?x ?y ?z ?x1 ?x2 ?h ?h1 ?h2]

define [L L' Lo L1 L2 t t1 t2] :=
[?7L:(List 'S1) ?L':(List 'S2) ?L@:(List 'S3) ?L1:(List 'S4)
?L2:(List 'S5) ?t:(List 'S6) ?t1:(List 'S7) ?t2:(List 'S8)]

set-precedence :: 150

We can now give a polymorphic definition of join as follows:

assert left-empty := (forall L . nil ++ L = L)
assert left-nonempty := (forall x L1 L2 . x::L1 ++ L2 = x::(L1T ++ L2))

All of the proofs we previously did with N-List values could now be redone using
(List N) values instead; for example, one of the proofs on page 142:

let {L := (one::zero::S one::nil)}
(!chain [(one::zero::nil ++ L)
= (one::(zero::nil ++ L)) [left-nonempty]
= (one::zero::(nil ++ L)) [left-nonempty]
= (one::zero::L) [left-empty]l)

or the proof on page 146:
define right-empty := (forall L . L ++ nil = L)

> by-induction right-empty {
nil => (!chain [(nil ++ nil) = nil [left-emptyl])
| (L as (h::t)) =>
let {IH := (t ++ nil = t)}
conclude (h::t ++ nil = h::t)
(!chain [(h::t ++ nil)
= (h :: (t ++ nil)) [left-nonempty]
=L [IH1])
3

Theorem: (forall ?L:(List 'S)
(= (join ?L:(List 'S)
nil:(List 'S))
?L:(List 'S)))

The first of these proofs involves ground terms of the list element sort (zero, one, etc.),
and so would have to be redone for lists of another sort (Boolean, say, with true and false
elements). But the second proof contains no occurrence of ground terms, so it applies
without change to (List Boolean) orindeed to (List S) for any sort S: Once the theorem
it proves is in the assumption base, the theorem can be used with (List S) values for any
sort S. The same will be true for all of the example proofs and exercises that follow.

fpmics 2016/9/20 10:19 Page 149 #173

3.9. LIST EQUATIONS 149

The following more general induction principle pertains to lists of values of an arbitrary
sort S:

Principle 3.4: Mathematical Induction for Lists over sort S
To prove V L . P(L) where L ranges over lists of sort S, it suffices to prove:

1. Basis case: P(nil).
2. Induction step:~¥ L . P(L)=V x . P(x::L).

As before, the antecedent assumption P(L) in the induction step is called the induc-
tion hypothesis; the variable x is of sort S.

Exercise 3.15: Our axioms for join define equations for terms in which nil and : : terms
occur in the first argument to join, and we proved right-empty for the case of nil in the
second argument. Write an equation for the case of a : : term in the second argument. (An
answer is given in Exercise 3.30, which asks you to prove the given equation.) a

By now we have seen several cases where a binary function obeys one or more axioms,
such as identity element axioms (zero is an identity element for P1us, one is for Times, and
now, nil is for join), and associative and commutative axioms (with which of course we
are familiar in the cases of Plus and Times for the natural numbers, but which exercises in
Section 3.17 ask you to confirm with proofs). Such basic axioms are so frequently useful in
reasoning about specific applications of binary functions that when we are presented with
a new binary function it is a good strategy to determine whether or not they hold for it. So
let’s next consider whether our list join function is associative:

define join-associative :=
(forall L@ L1 L2 . (L@ ++ L1) ++ L2 = L@ ++ (L1 ++ L2))

Intuitively, this relation should hold, as Figure 3.6 suggests. Note the similarity of this
diagram to the one on page 143 depicting a relation between join and : :, which can be
regarded as a “mixed” associativity relation.

In fact, in the following proof of join-associative by induction, we make several uses
of that same relation, left-nonempty, between ++ and : ::

by-induction join-associative {
nil =>
pick-any L1 L2
(!'chain [((nil ++ L1) ++ L2)
--> (L1 ++ L2) [left-empty]
<-- (nil ++ (L1 ++ L2)) [left-empty]])
| (L as (h::t)) =>
let {IH := (forall L1 L2 . (t ++ L1) ++ L2 =t ++ (L1 ++ L2))}
conclude (forall L1 L2 . (L ++ L1) ++ L2 = L ++ (L1 ++ L2))

fpmics 2016/9/20 10:19 Page 150 #174

150 CHAPTER 3. PROVING EQUALITIES

pick-any L1 L2
(!chain
[(Ch::t ++ L1) ++ L2)
-=> ((h::(t +#+ L1)) ++ L2) [left-nonempty]
=-=> (h::((t ++ L1) ++ L2)) [left-nonempty]
==> (h::(t ++ (L1 ++ L2))) [IH]
<-- (h::t ++ (L1 ++ L2)) [left-nonempty]])

}

We give additional examples of proofs of list theorems in Section 3.11, but we first step
back to consider what we can do to ensure that the axioms on which we are basing our
proofs are the proper starting points. The main tool we recommend for this purpose is
evaluation of ground terms, as discussed in the next section.

L

join join

@l @ %)

N/

join join

l l

Figure 3.6
Tllustration of the associativity of list concatenation.

3.10 Evaluation of ground terms

How do we know that the two axioms we have given for Plus succeed in capturing our
intentions, namely, that they characterize Plus as the binary addition function on the nat-
ural numbers? Admittedly, these axioms are simple and it is arguable that nothing more
than a moment’s reflection is needed to grasp their meaning. Moreover, we are able to
prove various results about Plus that we know to be true of the addition function, such

