fpmics 2016/9/20 10:19 Page 399 #423

6

Implication Chaining

IN THIS chapter we extend the chaining style of proof from equational logic to full first-
order logic. Proofs expressed in this style tend to be particularly readable and will be
used widely throughout the rest of the book.

6.1 Implication chains

Recall the general form of a proof by equational chaining:

(!'chain [f1 = B J1
=1 J
= lyt1 Jnl).

The goal here is to “connect” the starting term ¢; with the final term #,4; through the
identity relation, that is, to derive

11 = lnt1. (6.1)

This is done in a number of steps n > 0 , where each step derives an intermediate iden-
tity t; = tiy1, i = 1,...,n, by citing J; as its justification (we do not need to be concerned
here with the exact nature of that justification). Provided that each step in the chain goes
through, the desired result (6.1) finally follows from the transitivity of the identity rela-
tion. Ultimately, it is this transitivity that makes equational chaining work, and it is this
transitivity, along with the inherently tabular format of chain, that makes these proofs so
perspicuous.

But identity is not the only important logical relation that is transitive. Implication and
equivalence are also transitive. Capitalizing on that observation, we can extend the chaining
style of proof from identities to implications and equivalences, reaping similar benefits in
notational clarity.

Let us consider implications first. The general format here is very similar to equational
chaining, except that the chain links are now sentences p; rather than terms ¢#;, and the
symbol ==> takes the place of =:

(!chain [p; ==> p» J1
=>p3 N

==> put1 Jnl).

fpmics 2016/9/20 10:19 Page 400 #424

400 CHAPTER 6. IMPLICATION CHAINING

The larger idea remains the same: the goal is to “connect” the starting point p; with the
end point p,,1, this time through the implication relation, that is, to derive

P1 = DPntl. (6.2)

This is done in a number of steps #» > 0, where each step derives an intermediate implica-
tion p; = pit+1, i = 1,...,n, by citing J; as its justification (we will discuss shortly exactly
what kinds of justification are appropriate here; for now we only need to keep in mind that
each step in the chain must include some justification item, whatever that might be, just
like equational chaining). Provided that each step in the chain goes through, the desired
conditional (6.2) ultimately follows from the transitivity of implication.

The justification J; for a step p; ==> p;41 typically consists of a unary method M that
can be applied to p; in order to produce p;+1. That is, M is a method that can derive the
right-hand side of the step from the left-hand side. More precisely, M is such that if p; is
in the assumption base, then (! M p;) will produce p;y1. Here is an example:

> (!chain [(A & B) ==> A left-and])

Theorem: (if (and A B)
A)

As with equational chaining, we prefer to enclose justification items inside lists, so we
would typically write the above as follows:
> (!chain [(A & B) ==> A [left-and]l])

Theorem: (if (and A B)
A)

The reason for the list notation is that a justification item may consist of more than one
method (and it may also include sentences, as we will soon see), so in the general case we
need to group all of the given entries—methods and/or sentences—in a list.

Here is a more interesting example:

> (!chain [(A & ~~ B) ==> (~~ B) [right-and]
==> B [dn11)

Theorem: (if (and A
(not (not B)))
B)
This chain has two steps. On the first step we use right-and to derive (~ ~ B) from

(A& ~~B),

on the assumption that the latter holds; and on the second step we derive B from (~ ~ B)
by dn.

fpmics 2016/9/20 10:19 Page 401 #425

6.1. IMPLICATION CHAINS 401

Note that even though an implication chain produces a conditional conclusion, there is
no explicit use of assume anywhere. It is the implementation of chain that uses assume,
not its clients. Specifically, the implementation starts by assuming the first sentence of the
chain, p1, and proceeds to derive the second element of the chain, p;, by using the given
method(s). If successful, this produces the conclusion p; = p». Then the same process is
repeated for the next pair of the chain: The conclusion py = p3 is derived, by assuming
p2 and inferring p3 through the given methods. We continue in that fashion, until finally
transitivity is used to produce the output p;1 = pp+1.

Anonymous methods can appear inline in the justification list of a given step:

> (!chain [(A & ~~ B) ==> B [method (p) (!dn (!right-and p))11)

Theorem: (if (and A
(not (not B)))
B)

> (!chain [(forall ?x . ?x = ?x) ==> (1 = 1) [method (p) (luspec p 1)I11)

Theorem: (if (forall ?x:'S
(= ?7x:'S ?7x:'S))
(=1 1)

In the first chain, method (p) (!dn (!right-and p)) was applied to the hypothesis
(A & ~ ~ B) to produce the conclusion B in one step. Inlining very small anonymous meth-
ods inside a chain step like that may be acceptable, but readability is compromised if the
method is more complicated. Even the first of the two examples above would arguably be
cleaner if the definition of the method were pulled out of the chain:

> let {M := method (p) (!dn (!right-and p))}
(!chain [(A & ~~ B) ==> B [MI])

Theorem: (if (and A
(not (not B)))
B)

The justification list of a given step p; ==> p;y| may contain extraneous methods that
fail to derive p;4+1 from p;. The implementation of chain will try every given method until
one succeeds, disregarding those that fail. For instance, if we add superfluous information
to each step of the previous example, the proof will still work :

> (!chain [(A & ~~ B) ==> (~~ B) [right-and dn mp]
==> B [left-and dnl]l)

Theorem: (if (and A
(not (not B)))
B)

fpmics 2016/9/20 10:19 Page 402 #426

402 CHAPTER 6. IMPLICATION CHAINING

This is a useful feature because oftentimes we know that a certain set of resources (meth-
ods and/or premises) justify a given step, but it would be onerous to specify exactly which
elements of that set are needed for the step; we prefer to have Athena make that determi-
nation for us.!

A justifying method for a step p; ==> p;y1 need not be unary, taking p; as its only
argument and deriving p;y1. Occasionally it makes sense to feed both the left-hand side
premise p; and the goal p;y1 as two distinct arguments to a justifying method. Methods of
either type (unary or binary) are acceptable as justifications for an implication step. When
a binary method is used, chain passes it the premise p; as its first argument and the goal
pi+1 as its second argument. For instance:

> let {M := method (premise goal) (!right-and premise)}
(!chain [(A & ~~ B) ==> (~~ B) [M]
==> B [dn]11)

Theorem: (if (and A
(not (not B)))
B)

In this simple example the binary method M ignores its second argument, the goal, because
we already (statically) know what that goal is—it’s the second conjunct of the premise!
But in more complex scenarios we may not know the goal ahead of time, and in such cases
it can be helpful to make the justifying method binary, giving it access to the premise as
well as to the goal.

For example, we often want to take steps p; ==> p;y; that pass from p; to an arbitrar-
ily complicated conjunction p;; that contains p; as one of its conjuncts, while all the
other conjuncts of p;;1 are already known or assumed to hold. We want a general-purpose
method, call it augment, that can justify such steps, so that we can write, for instance:

assert A, B
> (!chain [C ==> (A & B & C) [augment]])
Theorem: (if C
(and A
(and B C)))

> (!chain [C ==> (C & B) [augment]])

Theorem: (if C
(and C B))

1 In fact this feature is not just useful but necessary, because, as we will see shortly, sometimes one justifier is
necessary for one part of the implication step and another justifier is needed for another part of the same step
(such cases arise often in structural implication steps; see Section 6.3). So the implementation of chain must be
able to accept an arbitrarily large list of justifiers and automatically determine which of these may be used where.

fpmics 2016/9/20 10:19 Page 403 #427

6.1. IMPLICATION CHAINS 403

> (!chain [C ==> (and A A B C A B) [augment]])

Theorem: (if C
(and A A B C A B))

The natural way to define augment is as a binary method that takes p; as its first argument
and the conjunction p;41 as its second argument and then derives p;;| by conj-intro:’

define augment :=
method (premise conjunctive-goal)
(!conj-intro conjunctive-goal)

Another example is the method existence, which allows us to pass from any sentence p
to an existential generalization of p, that is, to a sentence of the form (exists vi---v, . q)
such that p can be obtained from ¢ by substituting appropriate terms for the free occur-
rences of the variables v; - - - v,,. For instance:

domain Person
declare likes: [Person Person] -> Boolean
declare Mary, Peter: Person

> (!chain [(Mary likes Peter) ==>
(exists x . x likes Peter) [existence]l)

Theorem: (if (likes Mary Peter)
(exists ?x:Person
(likes ?x:Person Peter)))

> (!chain [(zero < S zero) ==> (exists x y . x < y) [existencell)

Theorem: (if (< zero
(S zero))
(exists ?x:N
(exists ?y:N
(< ?7x:N ?2y:N))))

The most straightforward way to implement existence is as a binary method that takes
the premise p as its first argument and the desired existential generalization as its second
argument:

define existence :=
method (premise eg-goal)
match (match-sentences premise (quant-body eg-goal)) {

2 Recall (footnote 16) that conj-intro is a unary method that takes as input an arbitrarily complicated con-
junction p and derives p, provided that all of p’s conjuncts are in the assumption base. It can be regarded as a
generalization of both.

w

©

fpmics 2016/9/20 10:19 Page 404 #428

404 CHAPTER 6. IMPLICATION CHAINING

(some-sub sub) => (!egenx eg-goal (sub (qvars-of eg-goal)))

3

(The procedure quant-body returns the body of a quantified sentence, while qvars-of takes
a quantified sentence of the form (Q vy ---v, . p), where p does not start with the quan-
tifier O, and returns the list of variables [v; - - -v,]. Both are defined in Athena’s library.
Finally, recall Exercise 5.3 for the definition of egenx.) Users can implement their own
methods for implication steps, with either unary or binary interfaces.

Sometimes an implication step p; ==> p;y; can only go through if we combine the
premise p; with additional, earlier information, namely, with sentences that were previ-
ously asserted, assumed, or derived.? Suppose, for example, that we know (A ==> B) to
be the case, say, because we have asserted it. Then, intuitively, we should be able to write
something like the following:

assert (A ==> B)
(!chain [(~ B) ==> (~ A) M1)

The question now is what sort of justification method M could work here. It is clear that
modus tollens (mt) is involved, but the issue seems to be that M only has access, via its
arguments, to local information, namely, to the left-hand side of the step (or, if we express
M as a binary method, to the right-hand side of the step as well). So how can we make M
take (A ==> B) into account?

The answer lies in a sort of partially evaluated application of modus tollens, whereby we
define M so that (A ==> B) already appears inside its body:

assert A=>B := (A ==> B)
> (!chain [(~ B) ==> (~ A) [method (p) (!mt A=>B p)I11)
Theorem: (if (not B)
(not A))
It should be clear that
method (p) (!mt A=>B p)

is a unary method which, when applied to the left-hand side of the implication step on line
3, namely (~ B), will successfully derive the right-hand side, (~ A), as required by the
specification of chain.

3 Uses of augment are actually of this sort, but the key difference of a step p; ==> p;;| [augment] from the
cases we are about to discuss is that the “earlier information” is all embedded in and retrievable from the right-
hand side, pjy 1, and is therefore local to the step, unlike the forthcoming examples.

fpmics 2016/9/20 10:19 Page 405 #429

6.1. IMPLICATION CHAINS 405

The following example uses the same technique to combine the left-hand side of a chain
step with two previous pieces of information via the ternary method cases:

assert A=>C := (A ==> (C)
assert B=>C := (B ==> (C)

> (!chain [(A | B) ==> C [method (p) (!cases p A=>C B=>C)11)

Theorem: (if (or A B)
)

However, it is tedious to write justifying methods in this long form every time we want
to combine a left-hand side with previous information through a method M of k > 1 argu-
ments (such as mt, cases, etc.). It is better to have a single generic mechanism that lets us
specify M and the k£ — 1 nonlocal arguments, and constructs the appropriate method auto-
matically. The binary procedure with is such a mechanism. It takes the k-ary method M as
its first argument and a list of the £ — 1 nonlocal arguments as its second argument, and
produces the appropriate method required by the implementation of chain. Using with in
infix notation,* the preceding example involving mt can be written as follows:

> (lchain [(~ B) ==> (~ A) [(mt with [A=>B1)11)

Theorem: (if (not B)
(not A))

Informally, this step says: “we derive the goal (~ A) by applying mt to the left-hand premise

(~ B) and to the nonlocal premise (A ==> B), in some appropriate order.” Or, some-

what more precisely, “we derive the right-hand side (~ A) from the left-hand side, (~ B),

through a method that is obtained from mt by fixing its other argument to be (A ==> B).”
The cases example above can be expressed as follows:

assert A=>C := (A ==> (C)
assert B=>C := (B ==> C)

> (!chain [(A | B) ==> C [(cases with [A=>C B=>C1)11)

Theorem: (if (or A B)
()

This chaining step can likewise be understood as follows: Derive C by applying cases to

the left-hand side (A | B) along with the two (nonlocal) sentences A=>C and B=>C.)
Another advantage of this approach is that the nonlocal arguments can be listed in an

arbitrary order. The implementation of with will try different permutations to discover one

4 Recall that binary procedures can be used in infix by default.
5 Again, by “nonlocal” we mean a sentence that appears on neither side of the step.

fpmics 2016/9/20 10:19 Page 406 #430

406 CHAPTER 6. IMPLICATION CHAINING

that succeeds. For instance, in the above chain, we could list the two nonlocal arguments
in reverse order and the proof would still go through:

> (!chain [(A | B) ==> C [(cases with [B=>C A=>C])11)

Theorem: (if (or A B)
©

By contrast, earlier, when we expressed the justifying method of this example in long form,
the arguments to cases had to be given in the exact right order:
(!chain [(A | B) ==> C [method (p) (!cases (A | B)
A=>C

B=>C)11)

Also, the data values in the list argument of with can be of arbitrary type, not just sentences.
For instance:

> (!chain [(forall x . x = x) ==> (1 = 1) [(uspec with [11)]11)
Theorem: (if (forall ?x:'S
(= ?x:'S ?x:'S))
(=1 1))

When the list has only one element, we can drop the square brackets altogether and simply
write the element by itself:

assert A=>B := (A ==> B)
> (!chain [(~ B) ==> (~ A) [(mt with A=>B)11)

Theorem: (if (not B)
(not A))

> (!chain [(forall x . x = x) ==> (1 = 1) [(uspec with 1)11)
Theorem: (if (forall ?x:'S

(= ?7x:'S ?x:'S))
(=1 1)

6.2 Using sentences as justifiers

It is natural to allow sentences to appear as justifications of implication steps, particularly
sentences that we will call rules, namely, sentences of the following form:

(forall vi---vg . p1 & - & pp=q1 & -+ & qm) (6.3)

fpmics 2016/9/20 10:19 Page 407 #431

6.2. USING SENTENCES AS JUSTIFIERS 407

where k,n >0, m > 0.° Consider, for instance, a universally quantified premise that
expresses the symmetry of marriage:

declare married-to: [Person Person] -> Boolean
assert* marriage-symmetry := (x married-to y ==>y married-to x)

Then we should be able to proceed from a sentence of the form (s married-to ¢) to the
conclusion (# married-to s) simply by citing marriage-symmetry. Inference steps of this
form are extremely common in computer science and mathematics. The implementation of
chain allows for such steps, as the following example demonstrates:

> (!chain [(Ann married-to Tom)
==> (Tom married-to Ann) [marriage-symmetry]])

Theorem: (if (married-to Ann Tom)
(married-to Tom Ann))

The implementation of chain realizes that the starting premise (Ann married-to Tom)
matches the antecedent of the cited rule, marriage-symmetry, under the substitution

?x:Person --> Ann, ?y:Person --> Tom

and proceeds to instantiate the rule with these bindings and perform modus ponens on the
result of the instantiation and the starting premise. This sequence of actions, wherein a
starting premise is matched against the antecedent of a rule, resulting in a substitution,
and then the rule is instantiated under that substitution and “fired” via modus ponens, is a
fundamental mode of reasoning,” and steps of that form are very common in implication
chains.® Here is another example:

assert* <-tran := (x <y & y < z ==>x < z)
> (!chain [(x < 3.14 & 3.14 < 5.2) ==> (x < 5.2) [<-tran]l)
Theorem: (if (and (< ?x:Real 3.14)

(< 3.14 5.2))
(< ?x:Real 5.2))

6 The form of (6.3) suggests that rule conjunctions must be binary (with longer conjunctions expressed as right-
associative compositions of binary conjunctions), but in fact polyadic conjunctions are also allowed.

7 Recall the relevant discussion of forward Horn clause inference from Section 5.4.

8 Strictly speaking, chain will match both the left-hand and right-hand sides of the step against the antecedent
and consequent of the cited rule, respectively. This is necessary because in some cases the antecedent might not
have enough information to give us the proper substitution. The forthcoming example on page 411, with the step
true ==> (is-male father Ann), illustrates that situation

fpmics 2016/9/20 10:19 Page 408 #432

408 CHAPTER 6. IMPLICATION CHAINING

When the antecedent of the rule is a binary conjunction, the instantiated conjuncts can
be listed in any order on the left-hand side of the step. Thus, for example, the following
works just as well:

> (!chain [(3.14 < 5.2 & x < 3.14) ==> (x < 5.2) [<-tran]l)

Theorem: (if (and (< 3.14 5.2)
(< ?x:Real 3.14))
(< ?x:Real 5.2))

The implementation of chain will notice that the left-hand side matches the antecedent
of the rule modulo the commutativity of conjunction, and will rearrange the conjuncts as
needed.

Biconditionals can also be used as rules. Athena will automatically extract the appropri-
ate conditional for the step at hand:

declare empty: [Set] -> Boolean

define [s s1 s2] := [?s:Set ?sl1:Set ?s2:Set]
assert* empty-def := (empty s <==> forall x . ~ x in s)
> (!chain [(empty s) ==> (forall x . ~ x in s) [empty-def]])

Theorem: (if (empty ?s:Set)
(forall ?x:Element
(not (in ?x:Element ?s:Set))))
> (!chain [(forall x . ~ x in s) ==> (empty s) [empty-def]])
Theorem: (if (forall ?x:Element

(not (in ?x:Element ?s:Set)))
(empty ?s:Set))

In addition, chain allows for rules of the following form:

(forall vi--vig .pt | =+ | pn = q1 & - & qm), (6.4)
where k,n > 0 and m > 0.° For example:
assert* R := (s1 = null | s2 = null ==> s1 intersection s2 = null)
> (!chain [(x = null | y = null) ==> (x intersection y = null) [R]])

Theorem: (if (or (= ?x:Set null)
(= ?y:Set null))

9 Again, more flexibility is actually allowed in that polyadic disjunctions may also be used.

fpmics 2016/9/20 10:19 Page 409 #433

6.2. USING SENTENCES AS JUSTIFIERS 409

(= (intersection ?x:Set ?y:Set)
null))

A step of this form will go through as long as the antecedent matches some disjunct in the
antecedent:

> (!chain [(x = null) ==> (x intersection y = null) [R]])

Theorem: (if (= ?x:Set null)
(= (intersection ?x:Set ?y:Set)
null))

The implementation of chain actually allows for some flexibility in using a rule of the
form (6.3) as a justifier for a step p ==> ¢. Specifically, if the left-hand side p matches
the antecedent of the rule and the right-hand side g matches some conjunct of the conse-
quent, the step will go through. For example, consider a rule whose consequent has three
conjuncts:

declare child, parent: [Person Person] -> Boolean
assert* R := (father x = y ==> male y & y parent x & x child y)
Then all of the following chain steps are successful:
> (!chain [(father Ann = Tom) ==> (Tom parent Ann) [R]])
Theorem: (if (= (father Ann)
Tom)
(is-parent-of Tom Ann))
> (!chain [(father Ann = Tom) ==> (male Tom) [R]])
Theorem: (if (= (father Ann)
Tom)
(male Tom))
> (!chain [(father Ann = Tom) ==> (Ann child Tom) [R]])
Theorem: (if (= (father Ann)

Tom)
(child Ann Tom))

This is just a convenience that can save us the effort of detaching the conjunct later in a
separate step. More interestingly, chain also allows us to use the rule in the contrapositive
direction: If p matches the complement of some consequent conjunct, and ¢ matches either
the complement of the antecedent or else

fpmics 2016/9/20 10:19 Page 410 #434

410 CHAPTER 6. IMPLICATION CHAINING

@ Py

where p} is the complement of p;, then the step goes through. For instance:

declare A, B, C, D, E, F: Boolean
assert R := (A& B & C ==>D & E & F)
> (!chain [(~ (D & E & F)) ==> (~ (A & B & C)) [R11)

Theorem: (if (not (and D
(and E F)))

(not (and A
(and B C))))

> (!chain [(~ F) ==> (~ (A & B & C)) [RID)

Theorem: (if (not F)
(not (and A
(and B C))))

> (lchain [(~ E) ==> (~A | ~B | ~C) [RID)

Theorem: (if (not E)
(or (not A)
(or (not B)
(not C))))

The first application of chain, on line 5, is a typical use of the contrapositive. The second
application, on line 12, saves some effort in that it first tacitly infers the negated consequent,
(~ (D & E & F)), from the given (~ F). The third application, on line 18, goes further in
that it follows up with an application of De Morgan’s law.

Similar remarks apply to rules of the form (6.4). First, the right-hand side of the step
may only match one of the consequent’s conjuncts, not all of them. Again, this allows for
tacit conjunction simplification:

assert* R := (A | B | C ==>D & E & F)
> (!chain [A ==> E [R1])

Theorem: (if A E)

Second, in the contrapositive direction, it is possible for the left-hand side to match
the complement of some consequent conjunct and for the right-hand side to match either
the complement of the antecedent or the conjunction of the complements of some of the
antecedent’s disjuncts:

fpmics 2016/9/20 10:19 Page 411 #435

6.2. USING SENTENCES AS JUSTIFIERS 411

assert* R := (A | B | C ==>D & E & F)
> (!chain [(~ E) ==> (~ B) [R11)

Theorem: (if (not E)
(not B))

> (lchain [(~ D) ==> (~B & ~C) [RID)

Theorem: (if (not D)
(and (not B)
(not C)))

It is possible to use “rules” without an explicit antecedent, so that » = 0 in the general
form (6.3). The implementation of chain will treat such a degenerate rule as a conditional
whose antecedent is true:

assert R := (forall x . male father x)
> (!chain [true ==> (male father Ann) [R]])

Theorem: (if true
(male (father Ann)))

This example works because Athena transforms the sentence
(forall x . male father x)
into the logically equivalent
(forall x . true ==> male father x).

We will see that implication chains starting with true are particularly handy with a variant
of chain called chain-> that returns the last element of the chain as its conclusion.

We have said that chain accepts sentences (“rules”) as justifiers for implication steps,
in addition to methods, but internally it is all methods; chain will actually “compile” a
given rule such as (6.3) into a method that can take any instance of the left-hand side of the
rule as input and will derive the appropriately instantiated right-hand side of the rule as its
conclusion.

6.2.1 Nested rules

Sometimes rules of the form (6.3) are buried inside larger, enclosing rules. A typical exam-
ple is provided by definitions of relation symbols, which are often of the form

(forall xy---x, . (R x1--x,) <==> C) (6.5)

where C is itself a rule of the form (6.3). For instance:

fpmics 2016/9/20 10:19 Page 412 #436

412 CHAPTER 6. IMPLICATION CHAINING

assertx subset-definition :=
(s1 subset s2 <==> forall x . x in s1 ==> x in s2)

Here the body of the definition is
(forall x . x in s1 ==> x in s2).

When s1 and s2 take on particular values, this becomes a rule that can be used in chaining
steps. For example, suppose we know that a certain set A is a subset of some set B. Then we
can derive the following specialized, nested rule from subset-definition:

(forall x . x in A ==> x in B).

We would like the ability to use this specialized rule in an implication step without having
to explicitly derive it first, simply by citing the enclosing rule as our justifier—in this case,
subset-definition. Thus, if the assumption base contains (A subset B), we would like
the following chain to produce the conditional stating that if e is in A then e is in B (where
e is some term of sort Element):

(!chain [(e in A) ==> (e in B) [subset-definition]]). (6.6)

If implication steps could only use rules of the form (6.3) as justifiers, then steps such
as the above could not work. We would first have to derive the nested rule separately, by
specializing subset-definition with A and B, and then use that rule in the above step:

let {nested-rule :=
(!chain-> [(A subset B)
==> (forall x . x in A ==> x in B) [subset-definition]])}
(!chain [(e in A) ==> (e in B) [nested-rulell)

(See Section 6.4 for a description of chain->.) Alternatively, using nested chains (Sec-
tion 6.8), we could write:
(!chain [(e in A) ==> (e in B)

[(forall x . x in A ==> x in B) <==
(A subset B) [subset-definition]]])

Either way, we would have to explicitly derive the inner, specialized rule first, and then use
that as a justifier for the desired implication step.

This should not be necessary, however. We should be able to take chaining steps such
as (6.6) directly, without having to explicitly derive the specialized inner rule first, and
Athena allows this, for example:

declare A,B: Set
assert (A subset B)

pick-any element

fpmics 2016/9/20 10:19 Page 413 #437

6.3. IMPLICATION CHAINING THROUGH SENTENTIAL STRUCTURE 413

(!chain [(element in A) ==> (element in B) [subset-definition]])

Theorem: (forall ?element:Element
(if (in ?element:Element A)
(in ?element:Element B)))

In general, Athena will accept as a justifier for an implication step any nested rule of the
form
(forall xi---x, . p <==> (forall yi- -y, . p1 ==> p2)), (6.7)

as well as
(forall xi---x, . p ==> (forall y1---yp . p1 ==> p2)), (6.8)
and will automatically derive and use a properly specialized instance of the inner rule,
(forall y1---ym . p1 ==> p2),

provided that the corresponding instance of the outer antecedent, p, is in the assumption
base.”

6.3 Implication chaining through sentential structure

There is another noteworthy way of enabling an implication chain step from p to ¢: by
using the structure of p and ¢. The simplest case occurs when p and ¢ are identical, in which
case the step will succeed even without any justifiers. The next simplest case occurs when
both p and ¢ are atomic sentences of the form (R sy ---s,) and (R #; ---1,), respectively.
Then, if J is a justifier (e.g., a list of identities and/or conditional identities) licensing the
conclusions (s; = ;) fori =1,...,n, then the step

R sp---sp) ==> (Rt1---ty) J (6.9)

will succeed (in some appropriate assumption base).'! For example:

define [\/ /\] := [union intersection]
assert* R1T := (x \/ y =y \/ x)
assert* R2 := (x /\ null = null)

> (!chain [(s1 /\ null subset s2 \/ s3)
==> (null subset s3 \/ s2) [R1 R211)

Theorem: (if (subset (intersection ?s1:Set null)
(union ?s2:Set ?s3:Set))

10 Of course the outer rule—(6.7) or (6.8)—must itself be in the assumption base.

11 More precisely, what we mean by J “licensing the conclusions s; = ¢; for i = 1,...,n” is that, for each such
i, the equational step (!chain [s; = # J1) should go through in f (where, again, f is the assumption base in
which the step (6.9) is taking place).

fpmics 2016/9/20 10:19 Page 414 #438

414 CHAPTER 6. IMPLICATION CHAINING

(subset null
(union ?s3:Set ?s2:Set)))

By using the given identities, R1 and R2, the system was able to equate corresponding terms
on each side:

1. the first subterm of the left-hand side, (s1 /\ null), was equated with the first subterm
of the right-hand side, null, via R2; and

2. the second subterm of the left-hand side, (s2 \/ s3), was equated with the second
subterm of the right-hand side, (s3 \/ s2), viaR1.

This is just a form of relational congruence. The same result could be obtained through
rcong, but we would first need to establish the identities of the respective terms explicitly.
This shorthand is more convenient.'?

Two other structural cases occur when p and g are of the form

(®© p1---pp) and (© q1---qn)

respectively, where © is either the conjunction or disjunction constructor. Such cases are
handled recursively: If the justifier J can enable each step (p; ==> ¢;) fori=1,...,n, then
the step (p ==> ¢) goes through. For instance:

assert* marriage-symmetry := (x married-to y ==> y married-to x)
assert* union-comm := (x \/ y =y \/ x)

> (!chain [(Tom married-to Ann | s1 \/ s2 = s3)
==> (Ann married-to Tom | s2 \/ s1 = s3) [marriage-symmetry
union-comm]l)

Theorem: (if (or (married-to Tom Ann)
(= (union ?sl1:Set ?s2:Set)
?s3:Set))
(or (married-to Ann Tom)
(= (union ?s2:Set ?s1:Set)
?7s3:Set)))

Here the implementation of chain will realize that the two sides of the implication step
are disjunctions, and will attempt to use the given justifiers to recursively relate the corre-
sponding disjuncts: (Tom married-to Ann) with (Ann married-to Tom), and

(s1 \/ s2 = s3)

with (s2 \/ s1 = s3).Both of these will succeed with the given information. The example
would work just as well if it involved conjunctions instead. Ultimately, steps of this form
succeed owing to the validity of the following inference rule, where © € {A, V}:

12 The implementation of chain does use rcong for steps of this form.

fpmics 2016/9/20 10:19 Page 415 #439

6.4. USING CHAINS WITH CHAIN-LAST 415

(p1==>q1) - (Pn==>qn)
(O p1-pn) == (O q1---gn))

Note that this rule is valid only for © € {and, or}. It is not valid for ® € {not,if,iff}.
The two remaining structural cases occur when p and ¢ are both quantified sentences,
respectively of the form

[SC]

(Q x pHand (Q y ")

for Q € {forall, exists}, in which case chain will continue its structural work recursively,
with the given justifier, on appropriately renamed variants of p’ and ¢’. For example:

> (!chain [(forall s1 . s1 \/ null = null)
==> (forall s2 . null \/ s2 = null) C[union-comm]])

Theorem: (if (forall ?s1:Set
(= (union ?s1:Set null)
null))
(forall ?s2:Set
(= (union null ?s2:Set)
null)))

6.4 Using chains with chain-last

Sometimes when we put together an implication chain of the form

(!chain [p1==>py Ji

DA (6.10)

==> put1 Jnl)

we are operating in an assumption base that contains the initial sentence, p1. In such cases
we are usually not content merely with showing that p; implies p,+1, which is the result
that would be returned by (6.10). Instead, we want to derive the final element of the chain,
Pn+1. That can be done just as above, but with a method named chain-1last rather than
chain. An alternative (and shorter) name that is often used for chain-1last is chain->. This
method works just as chain does, except that after the implication p; = p,4+1 is produced,
modus ponens is used on it and pj to derive p,1.'? For instance, the chain-1ast call below
will produce the conclusion B:

13 If you view the chain of implications as a line of dominoes, you can think of the effect of chain-last as
tapping the first domino, py, in order to topple (derive) the last piece, pj,4 1.

fpmics 2016/9/20 10:19 Page 416 #440

416 CHAPTER 6. IMPLICATION CHAINING
> assume hyp := (A & ~~ B)
(!both (!chain-last [hyp ==> (~~ B) [right-and]
==> B [dn]11)

(!left-and hyp))
Theorem: (if (and A
(not (not B)))
(and B A))
Thus, a call of the form
('chain-last [p; ==> po J “oo P ==> ppy1 Jnd)
is equivalent to:
(!mp (!chain [p1 ==> p2 Ji Pn ==> pnt1 Jnl) p1).
And conversely,
(!chain [p; ==> py Ji ceo Pn ==> putt Jnd)
is equivalent to
assume p; (!chain-last [p1 ==> p» Ji Pn ==> Pn+1 D).

Note that, unless it is exceptionally long, a chain-last application rarely needs a conclu-
sion annotation, since its conclusion is immediately apparent: It is always the last link of
the chain.

The rest of the book contains many other examples similar to the preceding proof of

(A& ~~B==>B &A)

where applications of chain-last (and other chain variants) are mixed in with other
Athena constructs: appearing as arguments to enclosing method calls, inside assume bod-
ies, and so on. Generally speaking, the more chaining we use, the more readable the proof.
If we can express an entire proof as a chain, we probably should. And it is often surpris-
ing how far we can get with chaining alone. The preceding proof, for example, can be
expressed as a single chain, and the result is shorter and clearer:

> (!chain [(A & ~~ B) ==> (~~ B & A) [comm]
==> (B & A) [dn11)

Theorem: (if (and A
(not (not B)))
(and B A))

fpmics 2016/9/20 10:19 Page 417 #441

6.5. BACKWARD CHAINS AND CHAIN-FIRST 417

By default, chain-last can be used on an implication chain that starts with true even
if the assumption base does not contain true explicitly. This is useful in tandem with
the aforementioned convention, whereby, for chaining purposes, a nonconditional rule is
treated as a conditional with true as its antecedent.

assert* R := (male father x)
> (!chain-> [true ==> (male father Ann) [R]1)

Theorem: (male (father Ann))

6.5 Backward chains and chain-first

Implication chains can be written in reverse, by using the symbol <== instead of ==>. This
can be useful in showing how a goal decomposes into something different (and hopefully
simpler). As an example, suppose we have the following properties in the assumption base,
where Mod denotes the remainder function on natural numbers:

declare pos: [N] -> Boolean

declare less: [N N] -> Boolean [<]
declare Mod: [N N] -> N [%]

define [x y z] := [?x:N ?y:N ?z:N]

assert* mod-< := (pos y ==> X % y < vy)

assert* less-asymmetric := (x < y ==> ~ y < Xx)
assert* <-S-2 := (x <y ==> x < S y)

Suppose now we want to prove that for any two natural numbers a and b, the successor of
b is not less than (a % b): (~ S b < a % b). The following chain demonstrates how this
somewhat complex goal reduces to the simple atom (pos b):

pick-any a:N b:N

(!chain [(~ S b < a%b) <==(a% b <Shb) [less-asymmetric]
<== (a % b < b) [<-5-21
<== (pos b) [mod-<11)

This is operationally equivalent to reversing the links of the chain and using forward rather
than backward implications:
(!chain [(pos b) ==> (a % b < b) [mod-<]

==> (a % b < S b) [<-5-21]
==> (~ S b < a%b) [less-asymmetric]l])

For the purposes of proof development, however, the two are not the same. To write the
second (forward) chain, we have to know the key starting point ahead of time: (pos b).

fpmics 2016/9/20 10:19 Page 418 #442

418 CHAPTER 6. IMPLICATION CHAINING

Essentially, we must have already figured out the reasoning in its entirety and then simply
written it down. That rarely happens in practice. In this case the backward version may
be a closer reflection of how the proof would actually be built, because we can start with
the goal, which we do know from the beginning, and then incrementally transform it by
inspecting the assumption base for appropriate information. In this case, presumably, we
would notice that the goal matches the consequent of less-asymmetric, and that would
lead us to take the backward step of transforming the goal to the appropriate instance of
the corresponding antecedent: (a % b < S b). Then we might notice that this new goal
matches the consequent of <-S-2, and that would lead us to transform that goal to the rel-
evant instance of the corresponding antecedent: (a % b < b). Finally, we would observe
that this goal matches the consequent of mod-<, and that would lead us, with one last back-
ward step, to the goal (pos b), which may already be known to hold. This process is known
as backward chaining. We have already seen it in connection with the backward tactics we
discussed when we studied proof heuristics, and we will explore it again in the context of
logic programming (in Appendix B).

In analogy with chain-last, there is a chain-first method that can be used to derive
the first element of a backward chain, provided that the last one is in the assumption base.
An alternative name for chain-first is chain<-. And also as before, when the last sentence
is true, chain-first will succeed even if true is not in the assumption base. For example:

define [x y z] := [?x ?y ?z]
assert* p-def := (x parent y <==> x = father y | x = mother y)
assert* gp-def := (x grandparent z <== x parent y & y parent z)
assert* factl := (Mary = mother Bob)
assert* fact2 := (Peter = father Mary)
> (!chain-first
[(Peter grandparent Bob)

<== (Peter parent Mary & Mary parent Bob) [gp-def]

<== (Peter = father Mary & Mary = mother Bob) [p-def]

<== (true & true) [factl fact2]

<== true [augment]])

Theorem: (grandparent Peter Bob)

(The second and third steps of this example, on lines 11 and 12, demonstrate the structural
implication chaining discussed in Section 6.3.) Essentially the same proof could also be
written in a somewhat shorter form by avoiding any reference to true and starting from the
given facts:

(!chain-first

[(Peter grandparent Bob)
<== (Peter parent Mary & Mary parent Bob) [gp-def]

fpmics 2016/9/20 10:19 Page 419 #443

6.6. EQUIVALENCE CHAINS 419

<== (Peter = father Mary & Mary = mother Bob)I)

Athena will realize that the first element of the chain is a conjunction of facts and will
derive that conjunction automatically.

6.6 Equivalence chains

We can use chain to put together equivalence chains just as well, by using the symbol <==>
instead of ==>. A chain call of the form

(!chain [p] <==> py J1

<==> p3 D
(6.11)

<==> put+1 Jnl)

will derive the biconditional (p; <==> p,+1), provided that each step p; <==> p;y| J; goes
through, i = 1,...,n. Everything that we have said so far about implication steps applies
here as well, with one additional caveat: The relevant justifying methods in J; must be
bidirectional, that is, they must not only be able to derive the right-hand side from the
left-hand side, but conversely as well. Here is an example:

> (!chain [(~~ A & (B ==> C)) <==> ((B ==> C) & ~~ A) [comm]
<==> ((~C ==> ~B) & A) [contra-pos bdnl])

Theorem: (iff (and (not (not A))
(if B C))
(and (if (not C)
(not B))
A))

Both of these steps went through because the justifying methods are bidirectional. An error
would occur if, say, we replaced the bidirectional version of double negation, bdn, with the
regular unidirectional version, dn, since we would then be unable to derive (~ ~ A) from
A.

As suggested by the second step of the previous example, everything that we have said
about structural implication steps carries over to equivalence steps. Another example:

assert* R1
assert* R2 :

(x \/ y =y \/ x)
(x /\ null = null)

> (!chain [(s /\ null subset s1 \/ s2)
<==> (null subset s2 \/ s1) [R1 R211)

Theorem: (iff (subset (intersection ?S:Set null)

fpmics 2016/9/20 10:19 Page 420 #444

420 CHAPTER 6. IMPLICATION CHAINING

(union ?S71:Set ?S2:Set))
(subset null
(union ?S2:Set ?7S1:Set)))

Structural equivalence chaining is actually more flexible, as the analogue of rule [SC] is
more widely applicable:

w1 <==>q1) -+ (Pn<==>qn)

WO p1---pn) <==> (O q1---qn))

Rule (6.12) holds for ® € {not,and,or, if, iff}, not just for ® € {and, or}, as was the case
with [SC]. Thus, for example:

(6.12)

> (!chain [(~ (A & B)) <==> (~ (B & A)) [comm]])

Theorem: (iff (not (and A B))
(not (and B A)))

The quantified analogues of the rule hold as well:
p<==>q)
Qv.p <==>0v.q

for QO € {forall,exists}. For example:

(6.13)

assert* R := (s1 \/ s2 = s2 \/ s1)

> (!chain [(forall x y z . x subset y \/ z)
<==> (forall x y z . x subset z \/ y) [RII)

Theorem: (iff (forall ?x:Set
(forall ?y:Set
(forall ?7z:Set
(subset ?x:Set
(union ?y:Set ?z:Set)))))
(forall ?x:Set
(forall ?y:Set
(forall ?7z:Set
(subset ?x:Set
(union ?z:Set ?y:Set))))))

In fact, chain implements a somewhat stronger formulation of (6.13) that allows for alpha-
equivalence. For example, the following variant of the preceding example works just as
well:

> (!chain [(forall x y z . x subset y \/ z)
<==> (forall u v w . u subset w \/ v) [R]])

Theorem: (iff (forall ?x:Set

fpmics 2016/9/20 10:19 Page 421 #445

6.7. MIXING EQUATIONAL, IMPLICATION, AND EQUIVALENCE STEPS 421

(forall ?y:Set
(forall ?z:Set
(subset 7?x:Set
(union ?y:Set ?z:Set)))))
(forall ?u:Set
(forall ?v:Set
(forall ?w:Set
(subset ?u:Set
(union ?w:Set ?v:Set))))))

6.7 Mixing equational, implication, and equivalence steps
Equivalence and implication steps can be mixed in a chain. In particular, it is possible to
switch from an equivalence step to an implication step:

(!chain [p; <==> p» J1

<==> pit1 Ji
=> piy2 Jitl

==> Dn+1 Jnl).
For example:

> (!chain [(A & B | A & C) <==> (A & (B | C)) [dist]
==> A [left-andl])

Theorem: (if (or (and A B)
(and A C))
A)

We can also switch from implication steps to equivalence steps:

> (!chain [(A & B | A & C) <==> (A & (B | C)) [dist]
==> A [left-and]
<==> (~~ A) [bdn1])

Theorem: (if (or (and A B)
(and A C))
(not (not A)))

If there is even one implication step, however, the chain of equivalences is broken, and the
conclusion of the chain cannot be a biconditional; at best, it will be a conditional. Hence,

fpmics 2016/9/20 10:19 Page 422 #446

422 CHAPTER 6. IMPLICATION CHAINING

strictly speaking, there is little reason to mix equivalence and implication steps. The above
proof, for instance, could just as well be written with implication steps only:

('chain [(A & B | A & C) ==> (A & (B | C)) [dist]
==> A [left-and]
==> (~~ A) [bdn11)

Nevertheless, the former version conveys more information to the reader: it makes it clear
that the first two elements of the chain are equivalent (owing to dist), as are the last two
elements of the chain (owing to bdn).

Backward implication steps can also be mixed with equivalence steps. Athena will adjust
the “direction” of the result accordingly. In the presence of backward implication steps, the
antecedent and consequent will be the last and first elements of the chain, respectively:

> (!chain [(~~ A) <==> A [bdn]
<== (A& (B | C) [left-and]
<==> (A & B | A & C) [distll)

Theorem: (if (or (and A B)
(and A C))
(not (not A)))

More interestingly, equational steps can be mixed with implication and/or equivalence
steps. In one direction, we can switch from equational steps to implication steps:

(!chain-> [f1 =1 Ji
il (6.14)
==>p| Jnt1

==>DPm+1 Jn+m+1])-

This can be useful when we first establish an identity #; = 7,41 by rewriting and then
that identity becomes transformed to some conclusion pj, either via some appropriate
method(s) or because it matches the antecedent of some rule and can therefore be used
to derive the rule’s consequent. After that point, implication chaining proceeds normally.
The final result of (6.14) will be the last element of the chain, p,,+1. For example, suppose
that we have defined the divides relation as shown below; and suppose we know that mul-
tiplication distributes over addition. We can then prove that a divides (a - b) + (a - ¢), for
all natural numbers a, b, and ¢, with the following mixed chain:

declare Plus: [N N] -> N [+]
declare Times: [N N] -> N [*]
declare divides: [N N] -> Boolean

fpmics 2016/9/20 10:19 Page 423 #447

6.7. MIXING EQUATIONAL, IMPLICATION, AND EQUIVALENCE STEPS 423

define [x y z k]l := [?x:N ?y:N ?z:N ?k:N]
assert* divides-def := (x divides y <==> exists z . x * z = vy)
assert* times-dist := (x * (y + z) = x * y + x * z)

pick-any a b ¢

(!chain-> [(a * (b + ¢c)) = (a * b + a *x c) [times-dist]
==> (exists k . a x k = a * b + a x c) [existence]
==> (a divides a * b + a * c) [divides-def1])

In the reverse direction, we can switch from implication/equivalence steps to equational
steps. For example, a call of the following form will derive the conclusion s = #,,, provided
that the initial sentence p is in the assumption base.

(!chain-> [p) ==>p3 Ji

==> (s = 1) sl

(6.15)
th Jur2

= Im Jﬁ+m])~

If chain is used instead of chain->in (6.15), then the conditional p1 = s = ¢, is returned. 14
For example:

declare Minus: [N N] -> N [-]
declare pos: [N] -> Boolean

assertx RI1 (x * zero = zero)
assertx R2 := (x - x = zero)

pick-any a b c d
(!chain [(pos a & b = c¢c x (d - d)) ==> (b = c * (d - d)) [right-and]
= (c * zero) [R2]
= zero [R111)

Theorem: (forall ?a:N
(forall ?b:N
(forall ?c:N
(forall ?d:N
(if (and (pos ?a:N)

14 If chain were used instead of chain-> in the case of (6.14), the conditional #; = t,11 = pp4+1 would be
returned. While this is fine as far as it goes, it means that all the work of the equational part of the chain would
be in vain, since the same result could be produced by skipping the equational steps and simply starting the
implication chain with the hypothesis #; = #,11. In general, chain applications that start with equational steps
and then switch to implication steps are unnecessary.

fpmics 2016/9/20 10:19 Page 424 #448

424 CHAPTER 6. IMPLICATION CHAINING

(= ?b:N
(Times ?c:N
(Minus ?d:N ?d:N))))
(= ?b:N zero))))))

Multiple switches can occur in the same chain, from implication steps to equational steps,
back to implication (and/or equivalence) steps, and so on, arbitrarily many times:

> pick-any a b c d
(!chain [(pos a & b = c * (d - d)) ==> (b

c * (d - d)) [right-and]
= (c * zero) [R2]
= zero [R1]

==> (zero = b) [sym11)

Theorem: (forall ?a:N
(forall ?b:N
(forall ?c:N
(forall ?d:N
(if (and (pos ?a:N)
(= ?b:N
(Times ?c:N
(Minus ?d:N ?d:N))))
(= zero ?b:N))))))

Athena allows for switching from implication to identity steps even when the final con-
clusion is an atomic sentence other than an identity. For instance:

declare less: [N N] -> Boolean [<]

1
2

3| pick-any a b c d

4 (!chain [(pos a & b < ¢c * (d - d)) ==> (b < c * (d - d)) [right-and]
5 = (c * zero) [R2]

6 = zero [R111)

7

s | Theorem: (forall ?a:N

9 (forall ?b:N

10 (forall ?c:N

11 (forall ?d:N

12 (if (and (pos ?a:N)

13 (less ?b:N

14 (Times ?c:N

15 (Minus ?d:N ?d:N))))

16 (less ?b:N zero))))))

In this example, rewriting starts on line 4 with the atom (b < ¢ * (d - d)). The rightmost
child of this atom, ¢ * (d - d), is rewritten in two steps into the term zero, and the con-
clusion (b < zero) is thereby generated by congruence. Instead of (b < ¢ * (d - d)),

fpmics 2016/9/20 10:19 Page 425 #449

6.8. CHAIN NESTING 425

we could have started with an arbitrary atom R(¢1,...,#,), and we could have then pro-
ceeded in the same fashion to rewrite the last term, #,, into some other term #, in a number
of equational steps, eventually producing the result R(#1,. . .,).

6.8 Chain nesting

It is possible to insert a chain inside the justification list of another chain, to an arbitrary
depth. The rationale for such nesting arises as follows. Sometimes, a step deep inside a
long chain must rely for its justification on a result p that is not in the assumption base in
which the chain itself is evaluated:

(!chain [t = B J1
=tiy1 [p] (6.16)
= Intl Jnl).

(Here the chain is equational, but similar remarks apply to implication chains or mixed
chains.) In this case, the passage from #; to #;11 relies on p, but p is not in the assumption
base in which (6.16) is to be evaluated. One way to get around this difficulty is to establish
p prior to the chain, by some proof D, so that it can then become available as a lemma
to (6.16), say, by putting (6.16) inside a let:

let {_ := conclude p
Dy
(6.16)

This approach works, but its drawback is that it might obscure the structure of the argu-
ment: p is established first, but it does not get used until considerably later in the proof, in
justifying the step from ¢; to #;4 inside (6.16). It would be preferable if we could somehow
inline the derivation of p right where it is needed, in the justification of the said step.!> We
would then have no need for an enclosing let; we could instead express the chain directly

15 Assuming that p is only needed at that one point. If p is used at multiple locations inside the chain, then it
would be preferable to derive it first and make it available as a lemma inside the chain.

fpmics 2016/9/20 10:19 Page 426 #450

426 CHAPTER 6. IMPLICATION CHAINING

in the following form:

b J1

(!chain [#
= tiv1 [Derive p here]

= tyr1 Jnd)

While the implementation of chain does not allow for arbitrary deductions inside justifica-
tion lists, it does allow for abbreviated subchains. So if p can be obtained by a chain, there
is probably a way to inline that chain above, placing it right where it says “Derive p here.”
By “abbreviated” we mean that the inlined chain will not be a complete method call of the
form (!chain ---) or (!chain-> --.), etc.; only the steps of the chain will be inlined.

As a concrete example from a real proof, consider the following goal:

declare leq: [N N] -> Boolean [<=]

define plus-minus-cancel :=
(forall x y . y <= x ==> x = (x - y) +y)

This is a useful result, proven by induction on x. For the basis, we need to prove
(forall y . y <= zero ==> zero = (zero - y) + y)

The available premises from which we are to derive this result are as follows:

assert* R1 := (zero - x = zero)
assert* R2 := (x + zero = Xx)
assert* R3 := (x <= zero ==> X = zero)

Now here is one possible proof of the basis step:

conclude (forall y . y <= zero ==> zero = (zero - y) + y)
pick-any y
assume hyp := (y <= zero)
let {lemma := (!chain-> [hyp ==> (y = zero) [R311)}
(!chain-> [((zero - y) + y)
= ((zero - y) + zero) [lemma]
= (zero + zero) [R1]
= zero [R2]

==> (zero = (zero - y) + y) [symll)

An alternative is to inline the chain derivation of lemma right where it is needed:

conclude (forall y . y <= zero ==> zero = (zero - y) +Yy)
pick-any y
assume hyp := (y <= zero)

(!chain-last [((zero - y) + y)

® w o w

fpmics 2016/9/20 10:19 Page 427 #451

6.9. EXERCISES 427
= ((zero - y) + zero) [(y = zero) <== hyp [R31]]
= (zero + zero) [R11]
= zero [R2]
==> (zero = (zero - y) + y) [symll)

In this version there was no need for the let, since the lemma (y = zero) was derived
(from hyp) at the step where it was needed, on line 5. A backward step <== was used for
the derivation, for readability, though a forward step would work as well:

conclude (forall y . y <= zero ==> zero = (zero - y) + y)
pick-any y
assume hyp := (y <= zero)
(!chain-> [((zero - y) + y)
= ((zero - y) + zero) [hyp ==> (y = zero) [R31]
= (zero + zero) [R1]
= zero [R2]

==> (zero = (zero - y) + y) [symll)

The justification list [hyp ==> (y = zero) [R3]] is essentially an abbreviated application
of chain-> (more precisely, it has the exact form of an argument to chain->). Likewise,
the list [(y = zero) <== hyp [R3]] in the previous proof can be viewed as an abbreviated
application of chain-<. In general, the direction of the arrows determines whether Athena
understands a nested chain as a tacit application of chain-> or chain-<.!6

6.9 Exercises

Exercise 6.1: Consider the following problems:

(a)

assert* premise-1
assert* premise-2 :=

(B | (A ==> B))

conclude B
Dy

(b)

assert* premise-1 := (~ B ==> ~ ()
(A&B | ~~0C)

assert* premise-2

conclude B
D,

16 These are the only two options for nested implication or equivalence chains. Such chains are always treated
as applications of chain-last or chain-first, never as applications of chain

fpmics 2016/9/20 10:19 Page 428 #452

428 CHAPTER 6. IMPLICATION CHAINING
(©)

assert* premise-1 := (~ exists x . Q x)

assert* premise-2 := (forall x . P x ==> Q x)

conclude (~ exists x . P x)

D3
(d)
assert* prem-1 := (forall x . x R x ==> P x)
assert* prem-2 := ((exists x . P x) ==> (~ exists y . Q y))

conclude ((forall x . Q x) ==> ~ exists z . z R z)

Dy
(e)
assert* prem-1 := (exists x . P x)
assert* prem-2 := (exists x . Q x)
assert* prem-3 := (forall x . P x ==> forall y . Q y ==> x R y)

conclude (exists x y . x R y)
Ds

Find appropriate deductions D1, ..., Ds, in chaining style, for each of the above. O

Exercise 6.2 (ite: If-Then-Else operator): Athena has ite predeclared as a polymorphic
ternary function symbol with the following signature:

declare ite: (S) [Boolean S S] -> S

The meaning of ite is captured by the following two axioms, which are also predefined
and contained in the initial assumption base:

assert* ite-axioms := [((ite true x _) = x)
((ite false _ x) = x)]

Thus, this operator can be viewed as implementing an “if-then-else” mechanism for con-
ditional branching: If b is true then (ite b #; £) “returns” ¢1, while if b is false then
(ite b 11 1) returns tp. We refer to b as the guard of the ite term.

In this book we do not make extensive use of ite because all of the functions we study
are definable just as well with more generic constructs. However, ite is a very useful oper-
ator and quite pervasive in software and hardware modeling. In this exercise we provide

fpmics 2016/9/20 10:19 Page 429 #453

6.9. EXERCISES 429

some brief information on how ite works in Athena and illustrate its use in a simple prob-
lem.

The ite operator is natively supported both by eval and by chain.!” To illustrate, intro-
duce a min operator on natural numbers as follows:'®

load "nat-less"

declare min: [N N] -> N [[int->nat int->nat]]

overload < N.<

define [x yl := [?x:N ?y:N]

assertx min-def := [(x min y = (ite (x < y) x y))]

> (eval @ min 1)

Term: zero

> (eval 2 min 1)

Term: S zero

We can nest ite occurrences to an arbitrary depth. Constructions of the form
(ite by s1 (ite by 1 (---)))

are common. However, such explicit nesting can be cumbersome to read and write. Athena
provides an ite* procedure that takes a list of guard-term pairs, each such pair separated
by --> and with the final guard possibly being the wildcard, and automatically produces
the correctly nested ite term. For instance, suppose we want to define binary search on
search trees of natural numbers:

datatype BT := null | (node N BT BT)
declare search: [N BT] -> BT
Then the interesting recursive clause of the definition could be written as follows:
((search x (node y L R)) = itex [(x = y) --> (node y L R)
| (x <y) --> (search x L)

| --> (search x R)J)

(In Chapter 11 and later chapters we define similar functions using another construct, fun.)

17 Itis also specially handled in translating Athena theories to external theorem provers such as first-order ATPs
and SMT solvers.

18 We load the file 1ib/main/nat-1less.ath (we omit the 1ib/main/ part because Athena looks there by default),
as that is where a less-than relation N. < on the natural numbers is introduced and defined, inside a module named
N. We will have more to say about the contents of that module in subsequent chapters.

fpmics 2016/9/20 10:19 Page 430 #454

430 CHAPTER 6. IMPLICATION CHAINING

In equational chaining, ite is handled essentially by desugaring into conditional equa-
tions. As long as the corresponding guard holds (is in the assumption base), an ite term
can be rewritten into the corresponding term. As an example, we ask you to prove the
following: (forall x y . x miny = x | x min y = y). O

