
r definite clauses, and

definite
In the present context a definite Horn clause can be understoo

A (definite) is simply a finite set of definite Horn clauses, that is, a finite
collection of facts and rules. A (definite) Prolog program, b of definite

icant. We will see shortly why clause order is significant in P
s also significant in Pro-

are called definite because, viewed as theories (as sets of fir



possibly infinitely many, as dictated by the rules in

following infinite set of sentences:

at satisfies the program. If we

, and the quantification is also implicit, with the tacit unde
tified. The backward direction is

. To figure out whether a goal is “of the same form” as the head
of a rule, we use unification. If successful, this produces a s

otherwise we might keep backchaining indefinitely. As menti

m as—unifies with—the (head

semantics of first-order logic (as discussed in Section



Definite programs can be viewed as , insofar as they only express affirmative

do allow for negated subgoals via a mechanism known as (finite

, the small program introduced in the first

logic programming stems from: the ability to not merely confi

which is studied in the field known as



lly infinitely many) resulting

into an infinite loop. This is where the aforementioned issue

Prolog system into an infinite loop. It takes some experience



(either an atom or a list thereof) and a list of definite clause

, whose first two argu-



The last query sends the system into an infinite loop. The reas

first
goals will lead to an infinite regress. This will become clear



Let us now give some definite clauses for addition and multipl

We now define by the following definite clauses:

Compare this relational definition with a functional definit

ward, then the first clause says that every instance of
, which is precisely the content of the first equation

in the functional definition. The second clause says that to p
, we first need to prove the subgoal

first operand to the addition is any number



The following queries begin to illustrate the flexibility of

go from fixed inputs to an output. We can just as well fix the outp
solve for other inputs, or fix only the output and solve for any

attempts to find any or all values satisfying the constraints

We can likewise define multiplication as follows:

Reading the clauses backward, the first says that every goal o



, we first need to

”) with respect to a definite logic program

The only undefined operation here is that of “executing a quer

nondeterminism comes in. We perform this operation by first c
whose head unifies with



the search space that will never be explored by a fixed search s

, and fix a strategy for exploring that tree. The nodes

, and its children are defined as follows. If

whose head unifies with

defined as

is infinite.

substitution in a depth-first



first strategy, even if there
are infinitely many such substitutions.



ks when the first input



clauses), so a recursive rule might send our depth-first strategy into an infinite loop if it is



s a severe efficiency penalty.

The first issue, negation, is not too serious; it would not be difficult to modify our inter-
preter so as to implement finite negation as failure. But effic

Prolog and XSB, that can execute Prolog queries much more effi

efficiency advantages, as new knowledge (facts or rules) can

Because this approach involves some file IO and starting the
process from scratch, there is a fixed runtime cost associate

quantified, but need not be. If it is not quantified, it is tacit
are universally quantified. In fact,



The output is always a two-element list whose first element is
indicating success or failure. When the first element of the o

satisfying substitutions (assuming there is a finite number of them). Failure here is signified



that rules out the first substi-
nt that rules out the first two

substitutions; and so on. This is not particularly efficient

that list. However, if there are infinitely many solutions discoverable by depth-first search,

l Prolog semantics (unifia-
bility). There are a number of predefined Prolog symbols intr

As in Prolog, the first argument can be an arbitrarily complex



Multiple transformers can be specified in this way, and all of

ansformers specified then



ple or conditional. Consider, for instance, the defining equ

These are universally quantified identities, so the naive ap

base and the form of the goal. Specifically, the procedure tak

1. Determine the (transitive closure of all the) defining equ

3. Translate all defining equations and conditional equatio



For example, assuming we have defined



, etc.) to the given goal and the modified clause list.


