fpmics 2016/9/20 10:19 Page 433 #457

7 Organizing Theory Development with Athena Modules

ODULES are used to partition Athena code into separate namespaces. We begin by
describing how to introduce a module and how to refer to names introduced inside a
module. Some examples are drawn from a recasting of some of the natural number devel-
opment in Chapter 3 using modules. We further introduce nested modules and illustrate
their use as a convenient way of encapsulating axioms and theorems for function symbols.
Brief examples are then given to illustrate a few additional module features, and the chapter
closes with a note on indentation conventions for modules.

7.1 Introducing a module

A module with name M is introduced by the following syntax:
module M {---}

The region between the matching curly braces is called the scope of the module. The
contents of that scope can consist of any nonempty sequence of any of the Athena directives
we have seen so far: sort declarations, datatype or value definitions, and so on, possibly
including other module definitions (called nested modules). Here is an example:

> module A {
define x := 'foo
define L := [1 2 3]
}
Term A.x defined.
List A.L defined.

Module A defined.

Module A does two simple things: It defines x as the term ' foo and L as the list [1 2 3]. To
retrieve one of these values after the module has been defined, we use its qualified name,
expressed using the dot notation: We write the name of the module, followed by a dot,
followed by the name that was given to the value inside the module.

> A.x
Term: 'foo

> A.L



fpmics 2016/9/20 10:19 Page 434 #458

434 CHAPTER 7. ATHENA MODULES

List: [1 2 3]

input prompt:1:1: Error: Could not find a value for A.z.

An error was reported when we tried to evaluate A.z, since the name z was not defined
inside A. The definitions given inside a module M can be inspected by the procedure
module->string, which takes as input the name of a module and returns a properly for-
matted and indented printed representation of the module’s bindings:
> (print (module->string "A"))
A --> module { ### 2 bindings
x --> 'foo
L --> [
1
2
3

]
}

Unit: O
As this example illustrates, all names introduced inside a module are by default visible to
the outside, once the module has been successfully defined. Accordingly, it is not necessary
to specify any “export” directives; everything is automatically exported. However, there is

a way to override this default behavior by prefixing a definition with the private keyword.
A private definition will not be visible outside of the module in which it appears.

> module A {
private define a := 99

define b := (a plus 1)
3

Term A.b defined.
Module A defined.
> A.b

Term: 100

> A.a

input prompt:1:1: Error: Could not find a value for A.a.



fpmics 2016/9/20 10:19 Page 435 #459

7.2. NATURAL NUMBERS USING MODULES 435

When a module is defined, its contents are processed sequentially, from top to bottom,
so forward references are not meaningful and are flagged as errors:

> module A {
define x := foo

define foo := 3

3

input prompt:3:15: Error: Could not find a value for foo.
Module A was not successfully defined.

This is similar to the top-down way in which load processes the contents of a file. Of
course, mutually recursive definitions are still possible using letrec. Also, as this last
example demonstrates, when an error occurs during the processing of a module’s definition,
the definition is considered to have failed, and therefore no module will be created as a
result of the (attempted) definition. If the module whose definition failed is embedded
inside other module definitions, then all those outer module definitions will fail as well.!

7.2 Natural numbers using modules

To show some of these module features in actual use, and to help introduce other features,
let us redo some of the development of the natural number datatype and functions:

datatype N := zero | (S N)
assert (datatype-axioms "N")

module N {
declare one, two: N

define [m n n' x y z k] := [?m:N ?n:N ?n':N ?x:N ?y:N ?z:N ?k:N]
assert one-definition := (one = S zero)

assert two-definition := (two = S one)

define S-not-zero := (forall n . S n =/= zero)

define one-not-zero := (one =/= zero)

define injective := (forall mn . Sm=Sn <==>m = n)

} # close module N

1 When a module definition fails, the global lexical environment, the global assumption base, and the global
symbol set are reverted to the values they had prior to the definition of the outermost module containing the failing
definition. That is, Athena will transitively roll back any intermediate effects to these three semantic parameters
that might have come about as a result of processing the module definition(s) up to the point of failure. However,
side effects to the store (and obviously, any output side effects) will not be undone.



fpmics 2016/9/20 10:19 Page 436 #460

436 CHAPTER 7. ATHENA MODULES

Here the module name is N, the same identifier we used to name the natural number
datatype. We could have used a different identifier to name the module; using the same
name is just a matter of convenience. If we write a proof outside the scope of module N, we
use qualified names; for example:

> conclude N.S-not-zero
pick-any n
(!chain->
[true ==> (zero =/= S n) [(datatype-axioms "N")]
==> (S n =/= zero) [sym]])

Theorem: (forall ?n:N

(not (= (S ?n)
zero)))

We can in turn use this sentence, since it is now a theorem, in the proof of N. one-not-zero.

> (!by-contradiction N.one-not-zero
assume (N.one = zero)

let {is := conclude (S zero = zero)
(!chain [(S zero)
= N.one [N.one-definition]
= zero [(N.one = zero)ll);
is-not := (!chain-> [true

==> (S zero =/= zero) [N.S-not-zeroll)}
(!absurd is is-not))
Theorem: (not (= N.one zero))

If we had included the proofs within the scope of the module, we could have use unqual-
ified names. Another way to write the proofs using unqualified names is to use an open
directive:

open N

conclude S-not-zero
pick-any n
(!chain->
[true ==> (zero =/= S n) [(datatype-axioms "N")]
==> (S n =/= zero) [sym]])

(!'by-contradiction one-not-zero
assume (one = zero)

let {is := conclude (S zero = zero)
(!chain
[(S zero)
= one [one-definition]
= zero [(one = zero)ll);

is-not := (!chain->



fpmics 2016/9/20 10:19 Page 437 #461

7.3. EXTENDING A MODULE 437

[true
==> (S zero =/= zero) [S-not-zeroll)}
(!absurd is is-not))

open M brings all the names introduced inside module M into the current scope, so that
they may be used without qualification. Multiple open directives may be issued, and several
modules My, ..., M, can be opened with a single open directive:

open M, ..., M,

However, every time we open a module we increase the odds of naming confusion and
conflicts, so excessive use of this directive is discouraged.

7.3 Extending a module

Modules are dynamic, in the sense that one can reopen a module’s scope and enter addi-
tional content into it at any time. This is done with extend-module; for example,

extend-module N {

define nonzero-S :=
(forall n . n =/= zero ==> exists m . n =S m)

define S-not-same := (forall n . S n =/= n)

by-induction nonzero-S {
zero => assume (zero =/= zero)
(! from-complements (exists m . zero = S m)

(!reflex zero)
(zero =/= zero))

| (S k) => assume (S k =/= zero)

let {_ := (!reflex (S k))}
(legen (exists m . S k =S m) k)
3

by-induction S-not-same {
zero => conclude (S zero =/= zero)
(!instance S-not-zero zero)
| (S m) => let {ihyp := (S m =/=m)}
(!chain-> [ihyp
==> (S S m =/= S m) [injectivell)
3

} # close module N

In this case we have included the proofs within the module and are thus able to use unqual-
ified names.



fpmics 2016/9/20 10:19 Page 438 #462

438 CHAPTER 7. ATHENA MODULES

7.4 Modules for function symbols

Although we could continue to put natural number properties directly into module N,
another alternative is to create a nested module within module N for properties of each
function symbol that we specify. For example, we can begin to do so for addition of natu-
ral numbers, as follows:

extend-module N {
declare +: [N N] -> N
module Plus {

assert right-zero := (forall n . n + zero = n)
assert right-nonzero := (forall mn . n+ Sm=3S (n + m))

} # close module Plus
} # close module N

Within module Plus, we can use the unqualified names right-zero and right-nonzero.
Outside of module Plus, but within module N, we must use names qualified with Plus:
Plus.right-zero and Plus.right-nonzero. And outside of N, we must use fully qualified
names N.Plus.right-zero and N.Plus.right-nonzero.

We now extend Plus with a couple of sentences that we intend as theorems:

extend-module N {
extend-module Plus {
define left-zero := (forall n . zero + n = n)
define left-nonzero := (forall nm . (S m) +n =S (m+ n))
} # close module Plus
} # close module N

Exercise 7.1: Prove

N.Plus.left-zero
using N.Plus.right-zero and N.Plus.right-nonzero. O
Exercise 7.2: Derive N.Plus.left-nonzero from the same two axioms. a

We could continue with additional extensions and corresponding proofs. See the file
lib/main/nat-plus.ath, where such a development is carried out. For multiplication, see
the development of a Times module in lib/main/nat-times.ath.



fpmics 2016/9/20 10:19 Page 439 #463

7.5. ADDITIONAL MODULE FEATURES 439

7.5 Additional module features

Lexical scoping applies as usual, so new definitions inside a module overshadow earlier
definitions in everything that follows, including any subsequent modules:

module M1 {
define x := 2

module M2 {

define y := (x plus 3)
define x := 99

module M3 {
define y := (x plus 1)
} # close module M3
} # close module M2
} # close module M1
> M1.M2.M3.y

Term: 100

Note that open is transitive. If a module M; is opened inside M>, and then M, is opened
inside M3, M will also be opened inside Mj3:

module M1 {
define a1l

3

module M2 {

open M1

define a2 := (al plus 2)
}

module M3 {
open M2
define a3 := (a2 plus al)

> M3.a3

Term: 4



fpmics 2016/9/20 10:19 Page 440 #464

440 CHAPTER 7. ATHENA MODULES

The value of a name 7 defined at the top level can always be retrieved by writing Top./.
For instance:

define foo := 2
module M {
define foo := 3;
define y := (foo plus Top.foo)
¥
> M.y

Term: 5

Top is not quite a proper module (it would have to contain itself otherwise!), but it can be
treated as such for most practical purposes. For instance,

(print (module->string "Top"))

produces the expected results. To ensure that Top is always treated distinctly and consis-
tently, a user-defined module cannot be named Top.2

7.6 Additional module procedures

We close by describing a few more primitive procedures that may be useful in working
with modules.

1. The unary procedure module-size takes the name of a module, as a string, and returns
the number of bindings in the corresponding module.

2. The unary procedure module-domain takes the name of a module, as a string, and returns
a list of all and only those identifiers, represented as strings, that are defined inside the
module. For instance:

module M {
define [x yl := [1 2]
3

> (map-proc println (module-domain "M"))

y

Unit: O

2 Of course Top can still be used to name a value, as module names and value-denoting identifiers comprise
different namespaces.



fpmics 2016/9/20 10:19 Page 441 #465

7.7. A NOTE ON INDENTATION 441

3. The binary procedure apply-module is a programmatic version of the dot notation. It
takes the name of a module M and any identifier / defined inside M and produces
the corresponding value, M.I. The module name can itself be nested, written in dot
notation:

module M1 { module M2 { define L := [] }}
> (apply-module "M1.M2" "L")

List: []

All of the above procedures generate an error if their first string argument does not
represent a module.

7.7 A note on indentation

In the brief examples of modules in this chapter, we have indented the contents, which is
consistent with a general policy of indenting code inside curly braces. In practice, however,
strictly adhering to this policy for modules can become inconvenient, as the contents of a
module often extend over hundreds or thousands of lines. Consequently, in the rest of the
book and in the Athena libraries, we indent the contents of modules in short examples, but
otherwise we just start at the first character of the line.



