fpmics 2016/9/20 10:19 Page 99 #123

2.16. MISCELLANEA 99

> define (f x) := (x times x)

Procedure f defined.

> (g 5

Term: 13

Why do we still get the same result as before? Because in the earlier code, at the point
where we defined g (line 5), the free occurrence of f in the body of g referred to the pro-
cedure defined in line 1. This is a static binding, unchanged when we bind f to a new
procedure in the second definition. Thus, we must also redefine g in order to have a def-

inition that binds f to the new function, by reentering the (textually) same definition as
before:

> define (g x) := ((f x) plus 3)
Procedure g defined.
> (g 5

Term: 28

In general, if you are interactively entering a series of definitions and you then revise
one or more of them, you’ll also need to reenter the definitions of other values that refer
to the ones you have redefined. Of course, if you enter all the definitions in a file that you
then load, things are simpler: You can just go back and edit the text of the definitions that
need changing and then reload the file.

2.16 Miscellanea

Here we describe some useful features of Athena that do not neatly fall under any of the
subjects discussed in the preceding sections.

1. Short-circuit Boolean operations: 8& and | | perform the logical operations “and” and
“or” on the two-element set {true, false}. They are special forms rather than primitive
procedures precisely in order to allow for short-circuit evaluation.>* In particular, to
evaluate (&& Fp ---F,), we first evaluate Fj, to get a value V1. V] must be either true
or false, otherwise an error occurs. If it is false, the result is false; if it is true, then
we proceed to evaluate F», to get a value V2. Again, an error occurs if V3 is neither
true nor false. Assuming no errors, we return false if V5 is false; otherwise V3 is

34 Because Athena is a strict (call-by-value) language, if, say, & were just an ordinary procedure, then all of its
arguments would have to be fully evaluated before the operation could be carried out, and likewise for | |.

fpmics 2016/9/20 10:19 Page 100 #124

100 CHAPTER 2. INTRODUCTION TO ATHENA

true, so we proceed with F3, and so on. If every F; is true then we finally return true
as the result. We evaluate(| | F - - - Fj) similarly, but with the roles of true and false
reversed.

2. Freshvariables: There is a predefined procedure fresh-var that will return a fresh vari-
able: a variable whose name is guaranteed to be different from that of every other vari-
able previously encountered in the current Athena session. When called with zero argu-
ments, the procedure returns a fresh variable whose sort is completely unconstrained:

> (fresh-var)
Term: ?2v1:'T190

A fresh variable of a specific sort can be created by passing the desired sort as a string
argument to fresh-var:

> (fresh-var "Int")

Term: ?v2:Int

> (fresh-var "(Pair 'T Boolean)")
Term: ?v3:(Pair 'T192 Boolean)

> ?v4

Term: ?v4:'T193

> (fresh-var)

Term: ?v5:'T194

If we want the name of the fresh variable to start with a prefix of our choosing rather
than the default v, we can pass that prefix as a second argument, in the form of a meta-
identifier:

> (fresh-var "Int" 'foo)
Term: ?foo0253:Int

The ability to generate fresh variables is particularly useful when implementing theo-
rem provers.

3. Dynamic term construction: Sometimes we have a function symbol /' and a list of terms
[t ---1,]1, and we want to form the term (f #; ---#,), but we cannot apply f directly
because the number 7 is not statically known (indeed, often both f and the list of terms
are input parameters). For situations like that there is the binary procedure make-term,

fpmics 2016/9/20 10:19 Page 101 #125

2.16. MISCELLANEA 101

which takes a function symbol f and a list of terms [71,...,#,] and returns (f ¢ ---1,),
provided that this term is well sorted:

> (make-term siblings [joe annl)

Term: (siblings joe ann)

. Free variable computation: The primitive unary procedure free-vars (also defined
as fv) will take any sentence p and return a list of those variables that have
free occurrences in p:

define p := (?x < ?y + 1 & forall ?x . exists ?z . ?x = ?z)
> (fv p)

List: [?x:Int ?y:Int]

> (fv (forall ?x . ?x = ?x))

List: [1]

. Free variable replacement: The operation of safely replacing every free occurrence of
a variable v inside a sentence p by some term ¢, denoted by {v — #}(p) (see page 39), is
carried out by the primitive ternary procedure replace-var. Specifically,

(replace-var v t p)

will produce the sentence obtained from p by replacing every free occurrence of v by ¢,
renaming as necessary to avoid variable capture.

. Dummy variables: Sometimes we need a “dummy” variable whose name is unimpor-

tant. We can use the underscore character to generate a fresh dummy variable, i.e., a
variable that has not yet been seen during the current session:

>

Term: ?v70:'T646

>

Term: ?v71:'T647

Observe that we get a different variable each time, first ?v70 and then ?v71. That is
what makes these variables fresh. The sorts of these variables are completely uncon-
strained, which makes the variables maximally flexible: They can appear in any context
whatsoever and take on the locally required sorts.

fpmics 2016/9/20 10:19 Page 102 #126

102 CHAPTER 2. INTRODUCTION TO ATHENA

> (father _)
Term: (father ?v73:Person)
> (_ in)

Term: (in ?v350:'T4428
?v351:(Set 'T4428))

7. Proof errors: A primitive nullary method fail halts execution when applied and raises
an error:

> (!fail)
standard input:1:1: Error: Proof failure.

A related method, proof-error, has similar behavior except that it takes a string as an
argument (an error message of some kind), and prints that string in addition to raising
an error.

8. Patterns inside let phrases: The syntax of let phrases is somewhat more flexible than
indicated in (2.11). Specifically, instead of identifiers /;, we can have patterns appear-
ing to the left of the assignment operators :=. These can be term patterns, sentential
patterns, list patterns, or a mixture thereof. For example:

> let {[x yl := [1 21}
Ly x]

List: [2 1]

> let {[(siblings L (father R))] := [(siblings joe (father ann))I}
[L R]

List: [joe annl

9. last-val: At the beginning of each iteration of the read-eval-print loop, the identifier
last-val denotes the value of the most recent phrase that was evaluated at the top
level:

> (rev [1 2D1)
List: [2 1]
> last-val

List: [2 1]

fpmics 2016/9/20 10:19 Page 103 #127

2.17. SUMMARY AND NOTATIONAL CONVENTIONS 103

10. Primitive methods: A primitive method is an explicitly defined method M whose body

is an expression E (rather than a deduction, as is the usual requirement for every non-
primitive method). M can take as many arguments as it needs, and it can produce any
sentence it wants as output—whatever the expression £ produces for given arguments.
Thus, M becomes part of our trusted computing base and we had better make sure that
the results that it produces are justified. Such a method is introduced by the following
syntax:

primitive-method (M [;---1,) := E

where /] - - - I, are the arguments of M. One can think of Athena’s primitive methods
as having been introduced by this mechanism. For example, one can think of modus
ponens as:

primitive-method (mp premise-1 premise-2) :=
match [premise-1 premise-2] {
(L(p ==> q) pl where (hold? [premise-1 premise-21)) => q
3

Normally there is no reason to use primitive-method, unless we need to introduce
infinitely many axioms in one fell swoop, typically as instances of a single axiom
schema. In that case a primitive-method is the right approach. An illustration (indeed,
the only use of this construct in the entire book) is given in Exercise 4.38.

2.17 Summary and notational conventions

Below is a summary of the most important points to take away from this chapter, as well
as the typesetting and notational conventions we have laid down:

Expressions and deductions play fundamentally different roles. Expressions represent
arbitrary computations and can result in values of any type whatsoever, whereas deduc-
tions represent logical derivations and can only result in sentences. We use the letters £
and D to range over the sets of expressions and deductions, respectively.

A phrase is either an expression or a deduction. We use the letter F to range over the set
of phrases.

Expressions and deductions are not just semantically but also syntactically different.
Whether a phrase F is an expression or a deduction is immediately evident, often just by
inspecting the leading keyword of F.

Athena keywords (such as assume) are displayed in bold font and dark blue color.

Athena can be used in batch mode or interactively. In interactive mode, if the input
typed at the prompt is not syntactically balanced (either a single token or else starting

