fpmics 2016/9/20 10:19 Page 3 #27

1 An Overview of Fundamental Proof Methods

UST AS procedures are essential tools in programming languages for expressing com-
J putations, proof methods play a similarly essential role in expressing deductions. For
a simple example of a proof method, consider one that is traditionally known as modus
ponens (Latin for “mode that affirms”):

Given a conditional (p = ¢) and its antecedent p, conclude g.

In this textbook, although we will discuss this and other basic methods (in Chapters 4
and 5), we treat them as primitives upon which higher-level proof methods are founded,
much as higher-level programming languages are ultimately based on machine language
instructions. The principal higher-level methods we will study are equality and implication
chaining, induction, case analysis, proof by contradiction, and abstraction/specialization.
In the following sections we preview some of the key aspects of these methods and their
formulations in Athena before going on to outline the overall structure of the book.

1.1 Equality chaining

Of all the proof methods covered in this textbook, equality chaining is probably the one
that is most widely used in computer science—and, for that matter, in many branches
of mathematics, natural science, and engineering. In fact, readers will likely have used
equality chaining many times already, albeit informally and perhaps without a thorough
understanding of either its technical basis or the full extent of its applicability. As a brief
but not completely trivial example of equality chaining, consider proving the algebraic

identity
@h ' =a (1.1)
where we are given the following equations as axioms:
Right-Identity: x-I=x
Left-Identity: I-x =x
Right-Inverse: xox~l =1

Here [is the identity element (or neutral element) for the operation -. In the case where
the domain over which x ranges is the set of nonzero real numbers and - is real-number
multiplication, / would simply be 1. But these identities also hold in many other domains,
for example, n x n invertible matrices over the reals, where - is matrix multiplication and /
is the #n x n matrix with 1’s on its diagonal and 0’s elsewhere.

fpmics 2016/9/20 10:19 Page 4 #28

4 CHAPTER 1. AN OVERVIEW OF FUNDAMENTAL PROOF METHODS

Using these identities, we might write the following equality chain as a proof of (1.1):
@Y ' =1-@H!

(@a™h-@hH™

=a-(@ - @hH™h

=a-l

=a

Given this equality chain as proof, the reader may already be convinced of the validity
of (1.1), but that impression might be something of an illusion based on familiarity (or
overfamiliarity) with the somewhat informal way in which such proofs are typically pre-
sented in textbooks or journal articles. In almost all of the proofs presented or assigned as
exercises in this textbook, we will adopt a more explicit style of proof that yields a higher
level of clarity, but without departing drastically from the usual textbook or journal proof
style.

To preview some of the key aspects of this style, let us take a closer look at what is
involved in the above proof and show where we would revise it to be clearer and more
complete. As a first step, let us indicate which of the given identities is used in each step
of the chain by annotating the step with the identity’s label.

(@hH1=1-(aH! [Lefi-Identity]
=(a-a V- (@hH™' [Right-Inverse]
=a (@' @™ [7]
=a-l [Right-Inverse]
=a [Right-1dentity)

We see that the third step does not correspond to any of the given identities. We might
gloss over this point by saying that that step is just a “regrouping” of the multiplication
operations, but in fact the validity of such a regrouping depends on yet another identity,
namely

Associativity: (x-y)-z=x-(y-z2),

which does hold, for example, for multiplication of reals and for multiplication of square
matrices. But associativity does not hold for all binary operators (e.g., consider real or
integer subtraction). Assuming we are also given this identity, our annotated proof now
becomes:

(@H ' =1-(@H™! [Lefi-Identity]
=(a-aV-(@ ™' [Right-Inverse]
=a-(a '@ H™Y) [Associativity]

=a-I [Right-Inverse]
[Right-Identity]

=da

fpmics 2016/9/20 10:19 Page 5 #29

1.1. EQUALITY CHAINING 5

Next, if we look more closely at the first step of the chain, we see that what is used to
justify this step is a particular instance of Lefi-Identity, namely

I-@h T =@hH™,

in which the variable x of Left-Identity is specialized to the particular term (a~!)~!. The
differing roles of the variable x in Lefi-Identity and of a in the term (a~")~! in the equation
being derived can be confusing and sometimes lead to errors in reasoning. (This would
be especially the case if we had written (1.1) as (x~!)~! = x.) To clarify the role of the
variables in the given identities, let us restate them showing explicitly that x, y, and z are
universally quantified (over D):

Right-Identity: ¥x:D .x -1 =x

Left-Identity: Vx:D.I-x=x

Right-Inverse: ¥x:D .x-x~' =1

Associativity: ¥x:D y:D z:D.(x-y)-z=x-(y-2)

Read V x:D as “for all x in D” or “for every x in D.”

So the instance of Left-Identity used in the first step of the equality chain is obtained
by specializing its universally quantified variable x to the term (a_l)_l. But what of the
variable a in that term? We can clarify its role by beginning the proof with the phrase “Let
a be an arbitrarily chosen element (of D).” So the full proof reads:

ToproveV a:D . (a=')~! = 4, let a be an arbitrarily chosen element of D. Then:

(@hHt=71-(aH! [Left-Identity]
=(@-aV-(@hH' [Right-Inverse]
=a-(a ' (@ H™Y [dssociativity]
=a-I [Right-Inverse]
=a [Right-Identity]

In the second step of the chain, there is another aspect of the use of the identity Right-
Inverse, namely that the instance a-a~' =7 of Vx:D .x-x~! = I is used to replace only
a subterm of (a-a~') - (a=1)~!, not the whole term. What justification is there for such a
subterm replacement? The answer to that question is one of the points about equality chain-
ing that we discuss in detail in Chapter 3. For now, we might consider further annotation of
equality chain steps to identify the subterm being replaced, and perhaps also the variable
substitutions being made in the justifying identity. While there are established notations
for doing so, requiring their use would make equality chains very tedious to write, and the
extra detail could hinder readability. But once the underlying principles are understood,
equality chains can remain quite readable and convincing without the extra detail.

For mechanical checking of equality chain proofs, both the identification of the subterm
being replaced and the variable substitution involved can be done quite efficiently with

® 9 e w B W o —

fpmics 2016/9/20 10:19 Page 6 #30

6 CHAPTER 1. AN OVERVIEW OF FUNDAMENTAL PROOF METHODS

limited subterm-search and term-matching capabilities. The Athena system used in this
textbook provides these capabilities, among many other places, in its chain method, so
that our example proof can be expressed at virtually the same level of explicitness as before
(writing * for - and (inv a) fora~!):

conclude (forall ?a:D . inv (inv ?a) = ?a)

pick-any a:D
(tchain [(inv (inv a))

= (I * inv (inv a)) [Left-Identity]
= ((a *x inv a) x inv (inv a)) [Right-Inverse]
= (a * ((inv a) * inv (inv a))) [Associativity]
= (a x I) [Right-Inverse]
= a [Right-Identity]])

Much more on using chain to prove equations in Athena can be found in Chapter 3, where
there are many examples and related exercises. We can also use chain to prove implications
and equivalences. We give a couple of examples of implication chaining in Section 1.3,
discuss it and equivalence chaining in detail in Chapter 6, and use them both extensively
in later chapters.

Note that function applications in Athena are written in prefix notation as (f a1 - - - a,),
that is, the function symbol f is written first, followed by the arguments a - - - a,, which
are separated simply by white space, with the whole thing surrounded by an outer pair of
parentheses. However, binary function symbols can be used in infix, and different prece-
dence levels can be given to different symbols, or even to the same symbol in different
contexts, and this can greatly reduce notational clutter. In addition, parentheses can be
omitted when writing successive applications of a unary function symbol such as inv. For
example, we could have written (inv inv a) instead of (inv (inv a)) in the preceding
proof. In fact, the notation of the proof can be simplified further if we ensure that inv
binds tighter than the operation *, in which case the term in line 6 could be written simply
as (a x inv a x inv inv a), since every function symbol is right-associative by default.
However, in the final version that follows we don’t go that far, since terms are sometimes
more readable if a few parentheses are used even when not strictly necessary.

The following is a self-contained Athena module containing all the code needed for this
example, including the introduction of the domain D and the declarations of the relevant
function symbols and their precedence levels.! The pound sign # begins a comment.

module M {
domain D
declare I: D
declare x: [D D] -> D [200] # We give a precedence of 200 to *
declare inv: [D] -> D [220] # and 220 to inv

1 A module M, introduced with the syntax module M { ... },is essentially a namespace containing sorts, func-
tion symbols, definitions, and possibly other nested submodules. We put this code into a module mostly because
it allows us to declare the symbol * distinctly from its predefined meaning in Athena (as numeric multiplication).

fpmics 2016/9/20 10:19 Page 7 #31

1.1. EQUALITY CHAINING 7

Let's define some handy abbreviations for a few variables over D:
define [x y z] := [?x:D ?y:D ?z:D]

We can now assert the four given axioms:

assert* Left-Identity := (I * x = x)

assert* Right-Identity := (x * I = x)

assert* Right-Inverse := (x *x inv x = I)

assert* Associativity := (x *x (y * z) = (x * y) * z)

Finally, the desired proof:

conclude (forall x . inv inv x = x)
pick-any a:D
(!chain [(inv inv a) = (I % inv inv a) [Left-Identity]
= ((a * inv a) x inv inv a) [Right-Inverse]
= (a * (inv a * (inv inv a))) [Associativity]
= (a * I) [Right-Inverse]
= a [Right-Identity]])

} # close module M

The directive assert is used to insert a sentence into the current assumption base, while
at the same time possibly giving the sentence a name for future reference (the identifier
preceding the symbol :=). We will have much more to say about assumption bases later
on, but for now you can think of the assumption base as the set of our working assump-
tions (axioms), as well as any results (theorems) we have managed to derive from those
assumptions. The directive assert* works just like assert, except that it first closes the
given sentence p; or, more precisely, it inserts into the assumption base a copy of p that
is universally quantified over all of p’s free variables. Accordingly, assert* (I * x = x)
is equivalent to assert (forall x . I * x = x). This shorthand saves us from having to
universally quantify our axioms manually.

Before we leave the topic of equality chaining, let us consider another important aspect
of such proofs: starting with the equation s = ¢ to be proved, and letting so = s, how do
we find the right sequence of terms s1,s2,...,5, = ¢ to link together? Of course, we are
restricted in this search in the first place by the set of available identities. Even so, it is
not always easy to see how to get started. In the preceding proof, for example, the first
and second steps replace the current term by a larger term (i.e., (=)' by - (a=)~!in
the first step, / by a- a~! in the second step), even though the goal term a is smaller than
the starting term (¢~')~!. Even if the given equality chain convincingly proves the desired
equation, the chain by itself does not explain how its author went about finding the right
terms to link together—it may seem to have required a level of creativity that goes well
beyond just the mechanics of writing proofs that are logically correct.

One approach to constructing equality chains that requires less creativity is to try to find
a chain of a special structure: working from both sides, s and ¢, try to reduce them to a
common term. We discuss this strategy in detail in Chapter 3 and recommend attempting

fpmics 2016/9/20 10:19 Page 8 #32

8 CHAPTER 1. AN OVERVIEW OF FUNDAMENTAL PROOF METHODS

it in many cases. However, this reduction strategy is not always applicable; for example,
it does not work for proving (a—')~! = a from the given identities. In Section 1.5, we
preview another strategy that can be used to limit the number of occasions in which difficult
searches for a proof are required.

Before leaving this section, consider the following problem involving three people: Jack,
Anne, and George.

Jack is looking at Anne, and Anne is looking at George. Jack is married, George
is not. Is some married person looking at an unmarried person?

Take a moment to try to answer the question, either (A) yes, (B) no, or (C) cannot be
determined from the given information. We give the answer in a later section of this chapter.
(This problem has nothing to do with proving equalities; we insert it here only to give the
reader a chance to try answering before seeing the solution discussed later.)

1.2 Induction

Not every valid equation can be proved just by chaining together instances of other valid
equations. Proving an equation may require some form of mathematical induction. We say
“some form of” because there are many manifestations of this important proof method,
including ordinary and strong induction, and several variations thereof for different data
types. Mathematical induction can also be used to prove other kinds of sentences besides
equations, but we begin its study in Chapter 3 with applications to equations expressing
properties such as associativity of the usual addition and multiplication operators on natural
numbers. The value of these proof examples and exercises is not so much that they are
needed in practice—other, higher-level methods of assuring correctness of basic arithmetic
are usually preferable—but as training for formulating and proving similar properties of
other abstract data types, like lists or trees. In Chapter 3 we introduce a mathematical
induction principle for linear lists, and in Chapter 8, we do the same for binary trees.

For natural numbers, ordinary mathematical induction takes the form of dividing a proof
of V n . P(n) into two cases: (i) P(0) and (ii) V n . P(n) = P(n+ 1). Case (i) is called the
basis case, case (ii) is called the induction step, and within it, the antecedent P(n) is called
the induction hypothesis. Proof of the basis case and the induction step suffices, basically
because every natural number is either 0 or can be constructed from 0 by a finite number
of increments by 1. We make these statements precise in Chapter 3, but for now we can
preview how we deal with induction proofs in Athena by defining natural numbers as an
algebraic datatype N:

datatype N := zero | (S N)

The symbols zero and S are the so-called constructors of N. If we interpret S as incre-
menting by 1 (and thus justly call it the “successor” function), we can read this recursive

fpmics 2016/9/20 10:19 Page 9 #33

1.2. INDUCTION 9

datatype” declaration as saying in Athena what we just said in English, that every natu-
ral number is either 0 or can by constructed from 0 by a finite number of increments by
1. Now let’s look at a simple example of proving a property of natural-number addition,
where the proof requires induction. We declare and axiomatize the addition function, Plus,
as follows:

declare Plus: [N N] -> N [+]

define [n m] := [?n:N ?m:N]
assert* Plus-zero-axiom := (n + zero = n)
assert* Plus-S-axiom := (n + S m =S (n + m))

In the declaration, the annotation [+] means that we overload the built-in symbol + to
designate Plus whenever the arguments of + are terms of sort N. The axioms express the
identities n 4+ 0 =n and n+ (m+ 1) = (n + m) + 1. Suppose now that we want to prove
the identity 0 4+ » = n, which in Athena we express as follows:

define Plus-S-property := (forall n . zero + n = n)

Of course, if we had already proved that Plus is commutative (the identity #n + m = m + n),
then we could prove Plus-S-property with a simple equation chain:

pick-any n:N
(!chain [(zero + n) = (n + zero) [Plus-commutative]
n [Plus-zero-axiom]])

However, we will see in Chapter 3 that to prove commutativity of Plus (by induction) we
need to use Plus-S-property in the proof! So, to avoid circular reasoning, we need to
prove Plus-S-property without using commutativity. We must use induction, but within
each case of the induction the proof is just a simple equation chain using the axioms and,
in the induction step, the induction hypothesis. Here is the proof:

by-induction Plus-S-property {
zero => (!chain [(zero + zero) = zero [Plus-zero-axiom]])
| (n as (S m)) =>
conclude (zero + n = n)
The induction-hypothesis is already in the assumption base.
Here we just give it a name:

let {induction-hypothesis := (zero + m = m)}
(!chain [(zero + S m)
= (S (zero + m)) [Plus-S-axiom]
= (S m) [induction-hypothesis]])

2 We use the phrase “data type” when we talk about data types in general, but the single word “datatype” when
we are specifically discussing an algebraic datatype, particularly in the context of an Athena datatype definition.

fpmics 2016/9/20 10:19 Page 10 #34

10 CHAPTER 1. AN OVERVIEW OF FUNDAMENTAL PROOF METHODS

In computation, we rarely represent numbers in the unary form of applications of S
to zero—sometimes also called a Peano representation after the Italian mathematician
Giuseppe Peano (1858-1932), one of the founders of mathematical logic and set theory—
preferring instead a binary, octal, decimal, or hexadecimal representation. But for rigor-
ously specifying and proving correctness of certain numeric or seminumeric algorithms,
the Peano representation and mathematical induction principles based on it have the advan-
tage of simplicity. For example, in Chapter 3 we define an exponentiation operator with
equations x = 1 and x"T! = x - ¥ and use mathematical induction to prove a few of its
properties. But, more importantly, in Chapter 12 we take this simple definition as the spec-
ification of the meaning of x”, against which a more efficient algorithm for computing x”
is proved correct. That algorithm reduces the problem for » > 0 to one for /2 (instead of
reducing it from # 4 1 to n), so the proofis done with the form of mathematical induction
called strong induction: to prove ¥ n . P(n), prove

Vn.[Vk.k<n=Pk)]=Ph).

Here, [V k . k < n= P(k)] is called the strong induction hypothesis. There are several sub-
tle but important points to understand about strong induction and its applications (e.g., why
there is no apparent need for a basis case), as discussed in Chapter 12.

Similarly, as we progress to induction principles for abstract data types like linear lists
and binary trees, we must understand new twists that distinguish them from the natural
number versions. In proofs of binary tree properties, for example, we must formulate and
take advantage of two induction hypotheses, one for each of the left and right subtrees of a
nonempty tree. We will see examples of this in Section 8.4.

1.3 Case analysis

What was your answer to the little problem posed at the end of Section 1.1? If it was
C (“cannot be determined from the given information”), you are in good company—but
wrong. The problem is from an article in Scientific American [93] that discussed why
people often fail to find the correct solution to various logic puzzles. In this case, C was
chosen more than 80 percent of the time, apparently because solvers didn’t take time to go
through all of the possibilities carefully. The correct answer is A (“yes”):

Either Anne is married or she isn’t. If she is married, then since she is looking
at George, and George is not married, we have a married person looking at an
unmarried person. If Anne is unmarried, then since Jack, a married person, is
looking at Anne, we know in this case too that a married person is looking at an
unmarried one.

fpmics 2016/9/20 10:19 Page 11 #35

1.3. CASE ANALYSIS 11

The form of reasoning used here, known as case analysis, is a powerful proof method,
as we will see in many examples and exercises in this textbook. However, the kinds of
applications we will discuss, beginning in Chapter 4, will not be simple logic puzzles like
the one above, since our goal in this textbook is to develop experience with logic and proof
methods in applications that are most relevant in computer science.

Thus, we will not be coming back to this or other examples of logic puzzles. Nonethe-
less, you might be curious about how you could set up the problem and derive the answer
in Athena. The following is a complete formulation; of course, it depends on features of
Athena that are only covered later, such as implication chaining, but if you compare its
basic structure with the English version above, you will see a strong correspondence.

module M {
domain Person

declare married: [Person] -> Boolean
declare looking-at: [Person Person] -> Boolean
declare Jack, Anne, George: Person

define [p1 p2] := [?pl:Person ?p2:Person]

assert [(Jack looking-at Anne)
(Anne looking-at George)
(married Jack)
(~ married George)]

Is some married person looking at an unmarried person?
Yes, as shown with a case analysis:

conclude goal := (exists pl p2 . married p1 &
p1 looking-at p2 &
~ married p2)

(!two-cases
assume casel := (married Anne)
(!chain-> [casel
==> (married Anne &
Anne looking-at George

& ~ married George) [augment]
==> goal [existencell)
assume case2 := (~ married Anne)

(!chain-> [case2
==> (married Jack &
Jack looking-at Anne &
~ married Anne) [augment]
==> goal [existencell))

fpmics 2016/9/20 10:19 Page 12 #36

12 CHAPTER 1. AN OVERVIEW OF FUNDAMENTAL PROOF METHODS

(Read the symbol ==> as “implies,” & as “and,” and ~ as “not.” These and other sentential
connectives used in Athena are discussed in Section 2.4, along with their correspondence
to other commonly used symbols.)

We will see many examples of case analysis in proofs about algorithms and data struc-
tures, in many variations. More general methods of breaking a proof down into two or more
cases, independently of any datatype, are introduced in Chapter 4.

1.4 Proof by contradiction

When proving a negative result, often the most natural method to apply is proof by contra-
diction: assume the opposite, and show that that assumption leads to a contradiction. As an
example, consider a relation < on some domain D, with the properties

Irreflexivity: YV x:D . ~x <x

Tranmsitivity: Vx:D y:D z:D . x <yAy <z=>x <z
Then the < relation also has the property
Asymmetry: NV x:D y:D .x <y=~y <x

PROOF: By contradiction. Choose any @ and b in D such that a < b and assume, contrary
to the stated conclusion, that b < a. Then from a < b, b < a, and transitivity, we obtain
a < a. But, by irreflexivity, we have ~ a < a, and hence we have a contradiction. |

The binary by-contradiction method is used to carry out such proofs in Athena. The
first argument to this method is the sentence p we are trying to prove, and the second
argument is a conditional of the form (p = false), where p is the complement of p; that
is, g if p is of the form (~ ¢), and (~ p) otherwise. If this conditional is in the assumption
base, then the result of this method application will be the goal p. And because deductions
derive their conclusions and enter them into the assumption base, this second argument is
typically expressed as a deduction. The most common way to derive false is via the absurd
method, which takes two arguments, both of which must be in the assumption base, and the
second of which is the negation of the first. For this example, we could set up the axioms
and prove the theorem as follows:

module A {
domain D
declare <: [D D] -> Boolean

define [x y z] := [?x:D ?y:D ?z:D]

assert* irreflexivity := (~ x < x)
assert* transitivity := (x <y & y < z ==> x < z)

fpmics 2016/9/20 10:19 Page 13 #37

1.5. ABSTRACTION/SPECIALIZATION 13

conclude asymmetry := (forall xy . x <y ==> ~y < x)
pick-any a:D b:D
assume (a < b)
(!'by-contradiction (~ b < a)
assume (b < a)

let {less := (!chain-> [(b < a)
==> (a < b &b < a) [augment]
==> (a < a) [transitivity]l);
not-less := (!chain-> [true
==> (~ a < a) [irreflexivityl1)}

(!absurd less not-less))
} # close module A

All of the details of this and similar proofs about a strict inequality relation are developed
in Chapter 8 for the natural numbers, and in greater generality in Chapter 14.

Proof by contradiction can also be used to prove a positive result, provided that combin-
ing its negation with other known properties leads to a contradiction. Either way, the steps
toward the contradiction may use any other proof method, including equality or implication
chaining (as in the preceding example), case analysis, or even other proofs by contradic-
tion. (Even a mathematical induction proof could be used along the way, but that would be
best handled as a separate proof whose result is then used as a lemma in working toward
the contradiction.)

As the asymmetry proof shows, a proof by contradiction can be done as a step in a
larger proof. We will see many examples in which one or more proofs by contradiction
are used within larger proofs, including cases where one is nested inside a larger proof by
contradiction.

1.5 Abstraction/specialization

At the end of Section 1.1, we mentioned one strategy for proving equalities that required
less creativity, namely “reduction to a common term,” but we noted that it does not always
work. There is another strategy that we advocate to limit the number of difficult proofs one
has to write, not only when constructing equality chains but in many other cases as well:
Work at an abstract level, proving theorems in the most general setting, then specializing
them to concrete instances as needed. We already pointed out that the identities on which
the proofof (a=!)~! = a depends are valid in a couple of important domains, D = nonzero
real numbers and D = invertible » x n matrices. Going further, we may regard these iden-
tities as axioms of an abstract structure T, with which we are able to derive, using the
constructed equality chain, the identity (a~!)~!
crete domain D in which the identities hold, the same proof can be reused to prove the
corresponding concrete specialization of (a=')~! = a. The binary operator - might even

= a as a theorem of 7. Then for any con-

fpmics 2016/9/20 10:19 Page 14 #38

14 CHAPTER 1. AN OVERVIEW OF FUNDAMENTAL PROOF METHODS

be specialized to an addition operator rather than a multiplication operator in a concrete
domain. For example, let D be the integer domain Z, and specialize - to integer addition, /
to its neutral element, and the inverse operator to integer negation, which we write as +, 0,
and (unary) —, respectively. Then the given identities become

Right-Identity: ¥ x:Z .x+0=x

Left-Identity: Vx:Z.04+x=x

Right-Inverse: Y x:Z .x+ (—x) =0

Associativity: Nx:Zy:Zz:Z . x+@y+2)=x+y) +z

and the proof of (— — a = a) becomes: Let a be an arbitrarily chosen element of Z. Then

(——a)=0+—-—-a) [Left-Identity]
=((a+—a)+——a) [Right-Inverse]
=(a+ (—a+——a)) [Associativity]
=(a+0) [
[

=da

Right-Inverse]
Right-Identity)

But we don’t have to construct this proof from scratch! Once we have found the
abstract-level proof, we can store it along with the abstract theorem it proves, to be sim-
ply reused, with appropriate specialization, in any concrete domain (like Z) in which the
axioms hold. We will see that Athena fully supports this strategy.

In mathematics, the advantages of working at an abstract level have long been known
(they were conclusively demonstrated by mathematicians who were developing the field
of abstract algebra over one hundred years ago). In computer science, the same bene-
fits are seen in some textbooks and journal articles in which a theory is developed at an
abstract level and then specialized in different ways. But readers with less mathematical
training might be more familiar with how similar principles have also been applied in com-
puter programming, not for constructing proofs, but for creating—automatically, during
compilation—concrete algorithms or data structures as instances of abstract algorithms or
data structures (often called generic algorithms or data structures).’ In this book we will
demonstrate the advantages of working at an abstract level by doing proofs in abstract the-
ories and specializing them to various concrete domains, including examples very similar
to the ones introduced in this section, starting in Chapter 14. Moreover, we will also apply
this strategy to prove correctness properties of abstract algorithms in Chapters 15 and 16,
including ones that are very similar to abstract algorithms in the C++ Standard Template
Library.

3 Major languages that support abstract programming (or “generic programming”), to one degree or another,
include Ada, C++, C#, and Java.

fpmics 2016/9/20 10:19 Page 15 #39

1.6. THE USUAL CASE: PROOF METHODS IN COMBINATION 15

1.6 The usual case: Proof methods in combination

In this introductory overview, we have sampled several of the most important proof meth-
ods: equality chaining, induction, case analysis, proof by contradiction, and abstraction and
specialization. In simple cases, a proof can be done with only one of these methods, but
most proofs require combinations of them. A key goal of this textbook is to develop skills
in choosing and properly applying a suitable combination of proof methods, particularly
when proving a correctness or optimization property of an algorithm or data structure. We
will see that, in many cases, a method that can be successfully applied to advance a proof'is
strongly suggested by the syntactic structure of the current proof goal and/or the current set
of premises. Chapter 4 especially explores this line of attack. In other cases, it is the seman-
tic content of the proof goal, or of available axioms and theorems, that provides important
clues as to how to proceed. In such cases, it can be much more difficult to discern the right
proof strategy than in the syntactically driven cases. We begin discussing how one can build
up one’s experience with such strategies in Section 3.11, and we return to this important
topic repeatedly in the rest of the textbook. But indeed, in all cases, whether syntactically
or semantically driven, there is no substitute for experience. Accordingly, throughout the
book we have provided an abundance of proof examples and exercises.

1.7 Automated proof

Athena is integrated with a number of powerful automated theorem-proving systems
(ATPs) and model-building systems such as SMT and SAT solvers.* Using these systems,
all of the example proofs in this chapter could be performed automatically, in an entirely
“push-button” manner. Having this level of automation available can be handy when tack-
ling large verification projects, with Athena used to specify the system, test the specifica-
tion, and outline the high-level structure of the proof, while ATPs fill in some of the more
tedious proof details.

In this book, however, we make no use of ATPs. That decision was made for pedagogi-
cal reasons. We believe that the only way to gain sufficient experience in developing struc-
tured proofs is to write them from the ground up, without resorting to black-box oracles to
cut corners or potentially get around tricky aspects of the required reasoning. Of course,
building a proof “from the ground up” does not mean that the proof should be expressed
exclusively in terms of low-level primitives such as modus ponens, in the same way that
developing a computer program from the ground up does not mean that we should write
the program in machine language. Abstraction mechanisms are indispensable in both cases.
But, for pedagogical purposes, we believe that the internal workings of those abstraction

4 The integration is seamless in that these systems can be invoked as primitive methods similar to Athena’s built-
in inference methods, or as primitive procedures, and the interaction occurs at the level of Athena’s polymorphic
sort system; the details of the underlying translations are hidden.

fpmics 2016/9/20 10:19 Page 16 #40

16 CHAPTER 1. AN OVERVIEW OF FUNDAMENTAL PROOF METHODS

mechanisms should be understandable in terms of the semantics of the host language, and
that is not the case for external ATPs. That said, readers are encouraged to experiment with
automated proof. To that end, we describe how ATPs can be used in Athena and provide a
number of examples in Appendix D.

1.8 Structure of the book

This part continues with an introduction to the basics of Athena in Chapter 2. As noted in
the Preface, not all of this chapter needs to be studied before going on; it can instead be
treated as a reference while continuing through the rest of the book.

Part IT (Fundamental Proof Methods) begins with an in-depth look at equality chaining
and induction applied to natural numbers and lists, including natural-number addition, mul-
tiplication, and exponentiation, and list concatenation and reversal. Chapter 3 also intro-
duces term evaluation and other tools that can be used before attempting proof, such as
automated conjecture testing.

We then continue with sentential and first-order logic (Chapter 4 and Chapter 5, respec-
tively), and generalize chaining to encompass implications and equivalences (Chapter 6).

In Part III (Proofs about Fundamental Datatypes), we begin by describing Athena’s
module mechanism for managing namespaces and for packaging large numbers of Athena
proofs and programs into properly organized components (Chapter 7). In Chapter 8 we
introduce and prove many simple properties of ordering relations over natural numbers.
With these results at hand, we are able to formulate and prove properties of natural-number
subtraction, which in later chapters are applied in defining integer arithmetic and natural-
number division. The final sections of the chapter develop ordering properties of lists and
binary search trees (over natural numbers).

In Chapter 9 we show how to develop the integer domain, including introduction of the
important tool of homomorphic mappings between different representations to simplify
proofs. The chapter concludes with a brief treatment of power series arithmetic.

Chapter 10 introduces some fundamental discrete structures, including ordered pairs,
sets, relations, functions, and maps, and proves a number of useful theorems about them.

In Part IV (Proofs about Algorithms), the main emphasis is on correctness and opti-
mization of algorithms, focusing again on operations on natural numbers. In Chapter 11,
a binary-search algorithm provides the setting for discussion of whether initial correct-
ness requirements placed on the behavior of the algorithm are sufficient to rule out unsat-
isfactory candidates. In Chapter 12, several variants of an exponentiation algorithm are
formulated and proved correct. While each variant does some computation that is unnec-
essary, it is noted that this will be corrected in Chapter 15, in an abstract version that is
also much more generally applicable. For the third example in this part, we extend the
study of fundamental numeric properties to natural-number division, with proofs about

