fpmics 2016/9/20 10:19 Page 78 #102

78 CHAPTER 2. INTRODUCTION TO ATHENA

suppose-absurd
conclude
by-induction
datatype-cases

(Don’t worry if you don’t yet recognize some of these; we will explain all of them in due
course.) In other cases, when the beginning keyword is let, letrec, check, match, or try,
it is necessary to peek inside the phrase. A let or letrec construct is a deduction if and
only if its body is. With a check or match phrase we simply look at its first clause body,
since the clause bodies must be all deductions or all expressions. With a try phrase, we
look at its first alternative. Finally, any phrase not covered by these rules (such as the unit
(), or a meta-identifier) is an expression. Thus, the question of whether a given phrase is a
deduction or an expression can be mechanically answered with a trivial computation, and
in Athena this is done at parsing time.

It is important to become proficient in making that determination, to be able to imme-
diately tell whether a given phrase is an expression or a deduction. Sometimes Athena
beginners are asked to write a proof D of some result and end up accidentally writing an
expression E instead. Readers are therefore advised to review the above guidelines and
then tackle Exercise 2.1 in order to develop this skill.

2.11 More on pattern matching

Recall that the general form of a match deduction is

match F {
T => Dj
| mp => Dy

where 71,..., T, are patterns and Dy, ..., D, are deductions. The phrase F' is the discrim-
inant whose value will be matched against the patterns. The pattern-matching algorithm is
described in detail in Section A.4, but some informal remarks and a few examples will be
useful at this point. We focus on match deductions here, but what we say will also apply to
expressions.

fpmics 2016/9/20 10:19 Page 79 #103

2.11. MORE ON PATTERN MATCHING 79

As we already mentioned in Section 2.10.6, to evaluate a match proof of the above form
in an assumption base £ and a lexical environment p,>> we start by evaluating the discrim-
inant in 8 and p, to obtain a value V#.”® We then start comparing the value V' against
the patterns z; sequentially, i = 1,...,n, to determine if it matches any of them. When we
encounter the first pattern z; that is successfully matched by ¥ under some set of bindings
p =1 V..., Iy > Vi}, we evaluate the corresponding deduction D;j in the context
of § and p augmented with p';>’ the result of that evaluation becomes the result of the
entire match deduction.

In general, an attempt to match a value V" against a pattern # will either result in failure,
indicating that 7 does not reflect the structure of V; or else it will produce a matching
lexical environment p’ = {I} — V1,..., Iy = Vi}, signifying that V successfully matches

7 under the bindings [; = Vj,j =1, ..., k. In the latter case we say that V matches = under
/

g The underscore _ is the wildcard pattern that is matched by any value whatsoever.
Suppose, for example, that the discriminant is the sentence (true | ~ false). This

sentence:

* matches the pattern (p1 | p2) under {p1 +> true,p2 — (not false)};

* matches the pattern p under {p — (or true (not false))};

* matches (or true (not q)) under {q+> false}

* matches all three patterns _, (or _ _), and (or _ (not _)) under the empty environ-
ment {}.

Here are the first three examples in Athena:

> define discriminant := (true | ~ false)
Sentence discriminant defined.
> match discriminant {

(p1 | p2) => (print "Successful match with p1:
3

p1l "\nand p2: " p2)

Successful match with p1: true
and p2:

25 Recall that a lexical environment is a finite function mapping identifiers to values. Athena maintains a global
lexical environment that holds all the definitions made by the user (as well as built-in definitions). For instance,
when a user issues a directive like define p := (true | false), the global lexical environment is extended
with the binding p — (or true false). Since it is a finite function, an environment can be viewed as a finite set
of identifier-value bindings, where each binding is an ordered pair consisting of an identifier / and a value V. We
typically write such a binding as / — V.

26 We ignore the store here because it does not play a central role in the ideas we are discussing.

27 The result of augmenting (or “extending”) an environment p with another environment p’ is the unique
environment that maps an identifier / to p’(/), if is in the domain of p’; or to p (/) otherwise.

fpmics 2016/9/20 10:19 Page 80 #104

80 CHAPTER 2. INTRODUCTION TO ATHENA

(not false)
Unit: ()

> match discriminant {
p => (print "Successful match with p: " p)
3

Successful match with p:
(or true
(not false))

Unit: ()

> match discriminant {
(or true (not g)) => (print "Successful match with q: " q)
3

Successful match with q: false
Unit: ()

Patterns are generally written in prefix, but binary sentential constructors (as well as func-
tion symbols) can also appear inside patterns in infix, as seen in the first example above.
Thus, for instance, (and p1 (not (or p2 p3))) and

(1 & (~ (p2 | P3N

are two equivalent patterns. However, patterns must always be fully parenthesized, so we
cannot omit parentheses and rely on precedence and associativity conventions to determine
the right grouping. For example, a pattern such as (p & g ==> r) will not have the intended
effect; the pattern should be written as ((p & q) ==> r) instead.

Sentences are not the only values on which we can perform pattern matching. We can
also pattern-match terms, lists, and any combination of these. Consider, for instance, the
following patterns:

1. t

2. (mother t)

3. (mother (father person))
4

(father _)
The term (mother (father ann)) matches the first pattern under
{t > (mother (father ann))};

it matches the second pattern under {t > (father ann)}; it matches the third pattern under
{person — ann}; and it does not match the fourth pattern.

fpmics 2016/9/20 10:19 Page 81 #105

2.11. MORE ON PATTERN MATCHING 81

define discriminant := (mother father ann)

> match discriminant {
t => (print "Matched with t: " t)
3

Matched with t:
(mother (father ann))

Unit: O

> match discriminant {
(mother t) => (print "Matched with t: " t)
3

Matched with t:
(father ann)

Unit: O

> match discriminant {
(mother (father t)) => (print "Matched with t: " t)
3

Matched with t: ann
Unit: ()

> match discriminant {
(father _) => (print "Matched...")
3

standard input:1:1: Error: match failed---the term
(mother (father ann))
did not match any of the given patterns.

Term variables such as ?x:Boolean are themselves Athena values, and hence can become
bound to pattern variables. For example, the term (union ?s1 ?s2) matches the pattern
(union left right) under the bindings {left > ?s1,right > ?s2}. Any occurrence of
a term variable inside a pattern acts as a constant—it can only be matched by that particular
variable. For example, the pattern (S ?n) will only be matched by one value: the term
(S ™n).

Quantified sentences can also be straightforwardly decomposed with patterns. Consider,
for instance, the pattern (forall x p). The sentence

(forall ?human . male father ?human)
will match this pattern under the bindings

{x > ?human:Person,p > (male (father ?human:Person))}.

fpmics 2016/9/20 10:19 Page 82 #106

82 CHAPTER 2. INTRODUCTION TO ATHENA

The sentence
(forall ?x . exists ?y . ?x subset ?y & ?x =/= ?y)
will also match, under
{x — ?x:Set,pr> (exists ?y:Set . ?x subset ?y & ?x =/= ?y)}.

Any identifier inside a pattern that is not a function symbol or a sentential constructor
or quantifier (such as if, forall, etc.) is interpreted as a pattern variable, and can become
bound to a value during pattern matching. For instance, assuming that joe has not been
declared as a function symbol, the term (father ann) will match the pattern (father joe)
under {joe — ann}. But if joe has been introduced as a function symbol, then it can no
longer serve as a pattern variable, that is, it cannot become bound to any values. It can still
appear inside patterns, but it can only match itself—the function symbol joe. Thus, the only
value that will match the pattern (mother joe) at that point (after joe has been declared
as a function symbol) is the term (mother joe) itself, and nothing else. So it is crucial to
distinguish function symbols (and of course sentential constructors and quantifiers) from
regular identifiers inside patterns.

Athena also supports nonlinear patterns, where multiple occurrences of the same pat-
tern variable are constrained to refer to the same value. Consider, for instance, the pattern
(p | p). Thesentence (true | true) matches this pattern under {p — true}; but the sen-
tence (true | false) does not. Likewise, the terms (union null null) and

(union (intersection ?x ?y) (intersection ?x ?y))

match the pattern (union s s), but the term (union ?foo null) does not.
Lists are usually taken apart with two types of patterns: patterns of the form

(list-of m1 7m3p)
and those of the form [z - - - 7,]. The first type of pattern matches any nonempty list
Vi Vil

with k£ > 1 and such that] matches 7| and the tail [V --- V4] matches 7. For example,
the three-element list
[zero ann (father peter)]

matches the pattern (list-of head tail) under the bindings
{head > zero,tail — [ann (father peter)]}.

The second kind of pattern, [z ---7,], matches all and only those n-element lists
[V1---V,] such that V; matches 7;, i = 1,...,n. For instance, [ann peter] matches the
pattern [s t] under {s — ann,t > peter}; but it does not match the pattern [s s]—a

fpmics 2016/9/20 10:19 Page 83 #107

2.11. MORE ON PATTERN MATCHING 83

nonlinear pattern that is only matched by two-element lists with identical first and second
elements.

These types of patterns can be recursively combined in arbitrarily complicated ways.
For instance, the pattern

[((p & @) ==> (~ r)) (list-of (forall x r) _)]
is matched by any two-element list whose first element is a conditional of the form
(p &q==>(~r))

and whose second element is any nonempty list whose first element is a universal quan-
tification whose body is the sentence r that appears as the body of the negation in the
consequent of the aforementioned conditional.

An arbitrary sentence of the form

(o p1-+-pn) (2.19)
with o € {not,and, or, if, iff}, can match a pattern of the form
((some-sent-con [) 7w ---my,),
provided that each p; matches z; in turn, i = 1,. .., n, in which case / will be bound to o:

> match (A & ~ B) {
((some-sent-con sc) left right) => [sc left right]
3

List: [and A (not B)]

> match (A ==> B) {
((some-sent-con sc) left right) => [sc left right]
3

List: [if A B]
A sentence of the form (2.19) can also match a pattern of the form
((some-sent-con [) 7)

when 7 is a list pattern. Here / will be bound to o and 7 will be matched against the list
[p1---pn). For example, the following procedure takes any sentence p, and provided that p
is an application of a sentential constructor sc to some subsentences pj - - - py, it returns a
pair consisting of sc and the sentences p; - - - p,, listed in reverse order:

> define (break-sentence p) :=
match p {
((some-sent-con pc) (some-list args)) => [pc (rev args)]

}

fpmics 2016/9/20 10:19 Page 84 #108

84

Procedure break-sentence defined.
> (break-sentence (~ true))

List: [not [truell

> (break-sentence (and A B C))
List: [and [C B A]]

> (break-sentence (A | B))

List: [or [B All

> (break-sentence (false ==> true))
List: [if [true falsell]

> (break-sentence (iff true true))
List: [iff [true truell

> (break-sentence true)

CHAPTER 2. INTRODUCTION TO ATHENA

Error, standard input, 2.5: match failed---the term true

did not match any of the given patterns.

Another useful type of pattern is the where pattern, of the form

(m

where FE),

where E is an expression that may contain pattern variables from z. The idea here is that
we first match a discriminant value 7 against 7, and if the match succeeds with a set
of bindings, then we proceed to evaluate £ in the context of those bindings (on top of the
lexical environment in which V" was obtained). The overall pattern succeeds (with that same
set of bindings) if the evaluation of £ produces true, and fails otherwise. For instance, the
following matches a list whose head is an even integer:

define (first-even? L) :=
match L {
((list-of x _) where (even? x))
| _ => false

3

=> true

We have only scratched the surface of Athena’s pattern-matching capabilities here. The
subject is covered in greater detail in Section A 4.

