fpmics 2016/9/20 10:19 Page 321 #345

First-Order Logic

N THIS CHAPTER we turn our attention to predicate (or first-order) logic. Our main
I objective is to describe the various Athena mechanisms for constructing proofs in pred-
icate logic. In addition, we present heuristics for developing such proofs, we build a library
of generically useful proof methods, and we also discuss the semantics of (polymorphic,
many-sorted) predicate logic.

Recall from Section 2.4 that the syntax of predicate logic extends the syntax of senten-
tial logic. So, just as before, we have atomic sentences (atoms), negations, conjunctions,
disjunctions, conditionals, and biconditionals, where an atom can be an arbitrary term of
sort Boolean. Thus, assuming that x, y, and z are term variables, all of the following are
legal first-order sentences:

Sentence Type
(x < x + 1) Atom
(~ even 3) Negation
(x<x+1&7=/=28) Conjunction
(x<y | x=y|y<x) Disjunction
(x<y&y<z-=>x<2) Conditional

(x +1<y+1<=>x<y) Biconditional

We assume for the remainder of this chapter that the following domains have been intro-
duced:

domains Object, Element, Set

along with the following symbols:

declare even, odd, prime: [Int] -> Boolean
declare subset: [Set Set] -> Boolean
declare P, Q, S: [Object] -> Boolean
declare R, T: [Object Object] -> Boolean

declare a, b, c, d: Object

fpmics 2016/9/20 10:19 Page 322 #346

322 CHAPTER 5. FIRST-ORDER LOGIC

We also assume that x, y, z, and w have been defined as the variables ?x, ?y, ?z, and ?w:

define [x y z w] := [?x ?y ?z ?w]

In addition to the kinds of sentences we are already familiar with from sentential logic,
we now have quantified sentences (or simply quantifications): For any variable v and sen-
tence p,

(forall v . p) 6.1

and
(exists v . p) 5.2)

are also legal first-order sentences. We refer to p as the body of (5.1) and (5.2). One can
also quantify over multiple variables with only one quantifier, for example, writing

(forall xy . x +y =y + x)

as a shorthand for
(forall x . forally . x +y =y + x).

Intuitively, sentences of the form (5.1) state that every object of a certain sort has such-
and-such property; while sentences of the form (5.2) state that some object (of a certain
sort) has such-and-such property. For instance, the statement that every prime number
greater than two is odd can be expressed as follows:

(forall x . prime x & x > 2 ==> odd x),
while the statement that there is some even prime number can be expressed as:
(exists x . prime x & even x).
Quantifiers can be combined to form more complex sentences. For instance:
(forall x . exists y . x subset y)
states that every set has some superset, while
(exists x . forall y . x subset y)

says that there is a set that is a subset of every set. Note that it is not necessary to explicitly
annotate occurrences of quantified variables with their respective sorts. For instance, in
the above examples it is not necessary to tell Athena that x and y range over sets. That is
inferred automatically:

> (exists x . forall y . x subset y)
Sentence: (exists ?x:Set

(forall ?y:Set
(subset ?x:Set ?y:Set)))

fpmics 2016/9/20 10:19 Page 323 #347

323

When we wish to make the sort S of a quantified variable explicit, we will write quantifi-
cations as
(forall v:S . p)

and
(exists v:S . p).

In the next two sections we will present Athena’s mechanisms for introducing and elimi-
nating each type of quantified sentence. But first we briefly turn our attention to an exercise
that develops more fully the idea that terms and sentences are trees, and gives computa-
tionally precise definitions of concepts such as variable occurrences in a sentence (both
free and bound variable occurrences), free variable replacements, and alpha-equivalence.
These concepts have already been introduced, so those who feel sufficiently comfortable
with them can move on to the next section. But for those who don’t mind some coding,
this exercise is a good opportunity to consolidate these ideas in greater algorithmic detail.

Exercise 5.1: As we explained in Section 3.3 by way of examples, terms and sentences
are essentially trees. We will now make this and other related ideas more precise.

(a) Define two unary procedures term->tree and sent->tree that transform a given term
or sentence into an explicit tree representation. Each node in the tree will be a map m of
the form

|{ 'data := x, 'pos := L, 'children := [my---m,] }|, (5.3)

where the 'data value x is the function symbol, variable, quantifier, or sentential con-
structor that appears at that node; the 'pos value L is the Dewey path of the node in the
tree, as a list of positive integers; and mj, ..., m, are the maps that (recursively) corre-
spond to the children of the node (hence leaf nodes will have n = 0), where each m; is
itself of the form (5.3). Thus, for instance, we should get:

> define t := (1 + x)
Term t defined.

> (term->tree t)

Map:

I{

'data := +

'pos := []

‘children := [|{'data := 1, 'pos := [1], 'children := [1}|

|{'data := ?x:Int, 'pos := [2], 'children := [1}|

]

3

> (term->tree true)

fpmics 2016/9/20 10:19 Page 324 #348

324 CHAPTER 5. FIRST-ORDER LOGIC

Map: |[{'data := true, 'pos := [], 'children := []}]

> (sent->tree (~ x < 1))

Map:
I{
'data := not,
'pos := [1,
'children := [|{'data := <,
'pos := [1],
'children := [|{'data := ?x:Int,
'pos := [1 1],
'children := []1}]|
|{'data := 1,
'pos := [1 2],
"children := [13}|]
]
H

(b) Define a procedure tree-leaves that takes a tree 7 produced by (either) one of the
above procedures and returns a list of all the leaves of T, where each leaf is represented
as a record (map) of the form |{'data := x, 'pos := L}|. For instance:

> (tree-leaves term->tree t)

List: [[{'data := 1, 'pos := [11}|
|{'data := ?x:Int, 'pos := [2]1}]]

(c) Define a procedure var-occs that takes a term 7 or sentence p and produces a map m
whose keys are all and only the variables that occur in ¢ (or p). The value that m assigns
to such a variable v is a list of the positions at which v occurs in ¢ (or p). For example:

> (var-occs forall x . exists y . x =y)

Map: [{?x:'T3097 := [[1] [2 2 111, ?y:'T3097 := [[2 1] [2 2 211}

(d) Define a procedure bound-var-occs that takes a sentence p and produces a map in the
form described above, except that the keys now consist of all and only the variables that
have bound occurrences in p. Also define a procedure free-var-occs that does the same
for the variables that have free occurrences in the input p.

(e) Define a procedure alpha-equiv? that determines whether two sentences are alpha-
equivalent.!

1 Of course Athena already provides an implementation of alpha-equivalence—one can simply apply equal? to
two sentences. The objective here, as in the following two parts of this exercise, is to implement this functionality
from the ground up for instructive purposes.

fpmics 2016/9/20 10:19 Page 325 #349

5.1. WORKING WITH UNIVERSAL QUANTIFICATIONS 325

(f) Define a procedure sent-rename that alpha-renames a given sentence.

(g) Define a procedure (replace-var-by-term x ¢ p) that replaces every free occurrence
of variable x in a given sentence p by term 7, performing renaming as needed so as to avoid
variable capture. Assume that the sort of 7 is an instance of the most general sort of x in

p- |

5.1 Working with universal quantifications

5.1.1 Using universal quantifications

A universal quantification makes a general statement, about every object of some sort. For
instance,
(forall x . x < x + 1) 5.4

says that every integer is less than its successor. Hence, if we know that (5.4) holds, we
should be able to conclude that any particular integer is less than its successor, say, that 5
is less than its successor:

(5<5+1) (5.5)

or that 78 is less than its successor:
(78 < 78 + 1). (5.6)
We say

that the conclusions (5.5) and (5.6) are obtained from (5.4) by universal specialization,
or universal instantiation.

In Athena, universal specialization is performed by the binary method uspec. The first
argument to uspec is the universal quantification p that we want to instantiate; p must be in
the assumption base, otherwise the application will fail. The second argument is the term
with which we want to specialize p:

assert p := (forall x . x < x + 1)
> (luspec p 5)

Theorem: (< 5
(+ 5 1))

> (luspec p 78)

Theorem: (< 78
(+ 78 1))

> (luspec p (2 * x))

Theorem: (< (*x 2 ?x:Int)

fpmics 2016/9/20 10:19 Page 326 #350

326 CHAPTER 5. FIRST-ORDER LOGIC

(+ (% 2 ?x:Int)
1))

The last example shows that the instantiating term does not have to be ground.
More precisely, if p is a universal quantification (forall v . ¢) in the assumption base
and 7 is a term, then the method call

(luspec p 1)

will produce the conclusion {v — ¢}(g), where {v — #}(gq) is the sentence obtained from
q by replacing every free occurrence of v by #. An error will occur if the result of this
replacement is ill-sorted, as would happen, for instance, if we tried to specialize (5.4) with
the Boolean term true. Note also that the sort S of the quantified variable v may be poly-
morphic. The application of uspec will work fine as long as the sort S; of the instantiating
term 7 is unifiable with S (recall the definition of unifiable sorts from page 51). For exam-
ple, the quantified sentence might state that the double reversal of any list L of any sort
is identical to L, and the instantiating term might be a list of Boolean terms, or a list of
integers, or a polymorphic variable:

declare reverse: (T) [(List T)] -> (List T)
> assert p := (forall x . reverse reverse x = X)

The sentence
(forall ?x:(List 'S)
(= (reverse (reverse ?x:(List 'S)))
?x:(List 'S)))
has been added to the assumption base.

> (luspec p (true::false::nil))

Theorem: (= (reverse (reverse (:: true
(:: false
nil:(List Boolean)))))
(:: true
(:: false
nil:(List Boolean))))

> (luspec p (78::nil))
Theorem: (= (reverse (reverse (:: 78
nil:(List Int))))
(:: 78
nil:(List Int)))

> (luspec p ?L)

Theorem: (= (reverse (reverse ?L:(List 'S)))

fpmics 2016/9/20 10:19 Page 327 #351

5.1. WORKING WITH UNIVERSAL QUANTIFICATIONS 327

?L:(List 'S))

In proof systems in which alpha-convertible sentences are not viewed as identical,” care
must be taken when performing universal specialization to avoid variable capture. In par-
ticular, the instantiating term should not contain any variables that might get accidentally
bound as a result of the substitution. Violating this proviso generates an error in such sys-
tems. For instance, consider the sentence

Vx.3y.x#y, (5.7)

which essentially says that there are at least two distinct individuals. If, in such a system,
we were allowed to specialize (5.7) with the variable y, we would obtain the nonsensical
conclusion

dy.y#y.
The problem here is variable capture: The instantiating term (the variable y) becomes
improperly bound by the existential quantifier 3 y.

One way of dealing with this issue is to disallow such universal specializations. Systems
like Athena, in which the choice of a quantified variable name is immaterial, offer a more
flexible alternative: They automatically avoid variable capture simply by alpha-renaming
the sentence being specialized, using fresh variables. Doing so is safe because, for deduc-
tive purposes, the renamed sentence is identical to the original. For instance, here is what
happens if we try to reproduce the above example in Athena:

> assert p := (forall ?x . exists ?y . ?x =/= ?y)
The sentence
(forall ?x:'S
(exists ?y:'S
(not (= ?x:'S 2y:'S))))
has been added to the assumption base.

> (luspec p ?y)

Theorem: (exists ?v1915:'S
(not (= ?y:'S ?v1915:'S)))

Athena accepted the attempt to instantiate
p = (forall ?x . exists ?y . x =/=?y) (5.8)
with ?y, but averted variable capture by first renaming p to something like

q = (forall ?v1914 . exists ?v1915 . ?v1914 =/= ?v1915). 5.9

2 So that, e.g., Vx . P(x) and Vy . P(y) are treated as two distinct sentences.

fpmics 2016/9/20 10:19 Page 328 #352

328 CHAPTER 5. FIRST-ORDER LOGIC

Substituting ?y for the free occurrence of ?x in the body of p now becomes the same as
substituting ?y for the free occurrence of ?v1914 in the body of (5.9), a replacement that is
harmless and results in the theorem displayed above. The upshot is that there is no need to
be concerned about variable capture when performing universal instantiation.

Finally, it is noteworthy that in some respects a universal quantification can be under-
stood as a large—potentially infinite—conjunction. For instance, if B is a unary predicate
on Boolean, then the sentence

(forall ?x:Boolean . B ?x:Boolean)
means the exact same thing as
(B true & B false),
given that true and false are the only Boolean values. Likewise, the sentence
(forall ?x:Int . ?x:Int < ?x:Int + 1)

can be informally viewed as the infinite conjunction of all atoms of the form (z < 7 + 1),
for every possible integer numeral ¢ (positive, negative, and zero). With this analogy in
mind, universal instantiation can be thought of as a generalized version of conjunction
elimination.

5.1.2 Deriving universal quantifications

How do we go about proving that every object of some sort S has a property P? That is,
how do we derive a goal of the form (Vv : S. P(v))? Typically, mathematicians prove such
statements by reasoning as follows:

Consider any / of sort S. Then ---D- - -

where the name (identifier) / occurs free inside the proof D. We can regard this construction
as a unary method with parameter / and body D that will take any term ¢ of sort .S and will
attempt to prove P(f). Clearly, if we have a method which can prove that any given object
in the relevant domain has the property P, then we are entitled to conclude the desired
(Vv:S§.P(v)). But how can we make sure that this “method” is indeed capable of doing
that?

Well, we can try applying the method to some random term and see if it succeeds, that
is, we can try evaluating the body D with some random term ¢ of sort S in place of the
parameter /, and see if we succeed in deriving P(f). But what if the success is a fluke?
What if D exploits some special assumptions about ¢ that wouldn’t be valid for some other
term #'? Suppose, for instance, that the domain in question is that of the natural numbers,
and when we apply the method to, say, zero, we do get the theorem P(zero) as output. But
what if D relied on some special assumptions about zero in the assumption base? Even if

fpmics 2016/9/20 10:19 Page 329 #353

5.1. WORKING WITH UNIVERSAL QUANTIFICATIONS 329

it did not, how can we be sure that the method truly generalizes, meaning that applying the
same reasoning to any other term ¢ of sort N will also derive P(¢)?

The trick is to choose our test term ¢ judiciously. It must be a term with no baggage, so to
speak. That is, a term about which there are definitely no special assumptions in effect. A
fresh variable x of sort S is just such a term; its freshness ensures that no special assump-
tions about it can possibly be in effect, since the assumption base will not contain any
occurrences of x. Accordingly, we may regard x as representing a truly arbitrary element
of the domain at hand. Hence, if the evaluation of D in an environment in which 7/ refers to
a fresh variable x succeeds in deriving the theorem P(x), we can conclude that P holds for
every object of the relevant sort. That is, we can safely conclude (Vv :S. P(v)).

Reasoning of this kind is expressed in Athena with deductions of the form

pick-any [D. (5.10)

We refer to D as the body of (5.10). To evaluate a deduction of this form in an assumption
base £, we first generate a fresh variable x of sort S, where S is itself a fresh sort variable
(representing a completely unconstrained sort), say, ?v135:'S47. This ensures that x is a
variable that has never been used before in the current Athena session. We then evaluate
the body D in f and, importantly, in an environment in which the name / refers to the fresh
variable x. We say that D represents the scope of that variable. If and when that evaluation
results in a conclusion p, we return the quantification (forall x . p) as the final result
of (5.10).
To make things concrete, consider as an example the deduction

pick-any x (!reflex x). (5.11)

Recall that reflex is a unary primitive method that takes any term ¢ and produces the
equality (¢ = £). To evaluate (5.11) in some assumption base £, Athena will first gener-
ate a fresh variable of a completely general and fresh sort, say ?x18:'S35. It will then
evaluate the body of the pick-any deduction, namely (!reflex x), in an environment in
which x refers to ?x18: 'S35. Thus, Athena will essentially be evaluating the deduction
(!'reflex ?x18:'S35). According to the semantics of reflex, that will produce the equal-
ity (?x18:'S35 = ?x18:'S35). Finally, Athena will generalize over the fresh variable and
return the conclusion

(forall ?x18:'S35 . ?x18 = ?x18) (5.12)

as the result of the entire pick-any. For readability purposes, however, Athena will present
this conclusion as

(forall ?x:'S . ?2x = 2x) (5.13)

instead of (5.12). That is harmless because the two sentences are alpha-equivalent, and
Athena treats alpha-equivalent sentences as identical for deductive purposes. Hence, if all

fpmics 2016/9/20 10:19 Page 330 #354

330 CHAPTER 5. FIRST-ORDER LOGIC

goes well, the user will never actually see or have to deal with the particular fresh variable
that Athena generated, ?x18: '$35.> The user simply enters the deduction (5.11) and the
theorem (5.13) is produced:

> pick-any x (!reflex x)

Theorem: (forall ?x:'S
(= ?x:'S ?7x:'S))

This example demonstrates that pick-any can universally generalize not just over all the
elements of a specific (ground) sort, such as the natural numbers or the booleans, but over
all the elements of infinitely many sorts. Such a polymorphic generalization can then be
specialized with any terms of appropriate sorts, say, with natural numbers or with booleans:

> define p := pick-any x (!reflex x)

Theorem: (forall ?x:'S
(= ?7x:'S ?x:'S))

Sentence p defined.

> (luspec p true)
Theorem: (= true true)
> (luspec p (2 * y))

Theorem: (= (x 2 ?y:Int)
(x 2 ?y:Int))

As another example, here is a proof that the equality relation is symmetric. Recall that
symis a unary primitive method that takes an equality (s = #) and returns (¢ = s), provided
that (s = ¢) is in the assumption base:

> pick-any a
pick-any b
assume h := (a = b)
(!'sym h)

Theorem: (forall ?a:'S
(forall ?b:'S
(if (= ?a:'S ?b:'S)
(= ?b:'S ?a:'S))))

3 But Athena does choose a fresh variable such as ?/_n, where I is the original pick-any name and #» is a number,
so that if the proof fails with an error message, it is easier to see where that particular fresh variable originated.

fpmics 2016/9/20 10:19 Page 331 #355

5.1. WORKING WITH UNIVERSAL QUANTIFICATIONS 331

How was this proof evaluated? It first generated a fresh variable of a brand new and com-
pletely unconstrained sort, say ?a74:'S95, and then proceeded to line 2 to evaluate the
body of the outer pick-any in an environment in which the name a refers to ?a74: 'S95.
Now the body of the pick-any happens to be another pick-any, so another fresh vari-
able (of unconstrained sort again) is generated, say, ?b75: 'S96, and Athena proceeds to
evaluate the body of the inner pick-any in an environment in which b denotes ?b75: 'S96
(and a denotes ?a74: 'S95). The body of the inner pick-any is an assume, so Athena adds
the hypothesis h := (?a74:'S95 = ?b75:'S95) to the assumption base (note that the two
sorts 'S95 and 'S96 have been unified at this point), and goes on to evaluate the body of
the assume, namely, the application of sym to the identity h. Since h is in the assumption
base, sym succeeds and returns the conclusion (?b75:'S95 = ?a74:'S95), so, backing up
one level, the assume returns the conclusion

(?a74 = ?b75 ==> ?b75 = ?a74)

(we have omitted the variable sorts for brevity). Hence, backing up one more level, the
inner pick-any returns the generalization

(forall ?b75 . ?a74 = ?b75 ==> ?b75 = ?a74),

or, equivalently,
(forall ?b . ?a74 = ?b ==> ?b = ?a74).

Finally, backing up one more level, the outer pick-any returns the generalization
(forall ?a74 . forall ?b . ?a74 = ?b ==> ?b = ?7a74),

or, equivalently,
(forall ?a:’S . forall ?b:’S . ?a = ?b ==> ?b = ?a).

This analysis included a lot of low-level details. It is rarely necessary to descend to such
a level when one is working with Athena proofs. After a little practice one can understand
what a proof does quite well at the higher and more intuitive level of its source text.

Observe that both quantified variables ?a and ?b in the conclusion of the above proof
have the same sort 'S. Again, 'S is a sort variable, ranging over the collection of all avail-
able sorts. The only constraint in the above sentence is that ?a and ?b range over the same
sort. That sort could be anything, but it has to be the same for both variables. This constraint
was discovered by sort inference in the course of evaluating the deduction.

Although not usually necessary, users may, if they wish, provide explicit sort annota-
tions for pick-any identifiers, and indeed this practice sometimes makes the code more
readable, and can also simplify sort inference, especially with nested pick-any deductions.
For instance, one may write:

fpmics 2016/9/20 10:19 Page 332 #356

332 CHAPTER 5. FIRST-ORDER LOGIC

pick-any e:Element
pick-any s:Set
assume h := (e in s)

In that case the generated fresh variable will be of the specified sort.
Nested pick-any deductions, incidentally, of the form

pick-any I} pick-any I, pick-any I3 ---

may be abbreviated as pick-any I1 I I3 - - -. Thus, for example, the previous proof could
also be written as follows:

pick-any a b
assume h := (a = b)
(!'sym h)

As another example, let us prove the tautology
((forall x . P x) & (forall'y . Qy) ==> forally . Py & Qy)

(For example, if everything is green and everything is large, then everything is both green
and large.)

define [all-P all-Q] := [(forall x . P x) (forall x . Q x)]

> assume hyp := (all-P & all-Q)
pick-any y:Object
let {P-y := conclude (P y)
(luspec all-P y);
Q-y := conclude (Q y)
(luspec all-Q y)3}
(!'both P-y Q-y)

Theorem: (if (and (forall ?x:0bject
(P ?x:0bject))
(forall ?y:0Object
(Q ?y:0Object)))
(forall ?y:0Object
(and (P ?y:0Object)
(Q ?y:0bject))))

Many more examples will appear later in the text and in the exercises.
We close this section by mentioning an alternative mechanism for deriving universal
quantifications, the syntax form

generalize-over E D. (5.14)

fpmics 2016/9/20 10:19 Page 333 #357

5.2. WORKING WITH EXISTENTIAL QUANTIFICATIONS 333

Here E is an arbitrary Athena expression whose evaluation must produce a variable v. The
idea is that v appears in D, and we will generalize over v whatever conclusion we obtain
from D. That is, we evaluate D in the given assumption base S, and whatever conclusion
p we get from that evaluation, we generalize it over v, thereby arriving at (forall v . p)
as the overall result of (5.14). There is a proviso here, namely that the variable v should
not have any free occurrences in the assumption base £. This ensures that D cannot exploit
any special assumptions about v that might happen to be in effect when D is evaluated, and
which could lead to an invalid generalization. As an example, evaluating the deduction

generalize-over ?foo:Int (!reflex ?foo:Int)

in some assumption base £ will result in (forall ?foo:Int . ?foo = ?foo), provided
that ?foo: Int does not occur free in f. If it does occur free, an error will be reported.

The two forms pick-any and generalize-over are closely related. The latter is more
primitive. The former can actually be defined as syntax sugar on top of generalize-over.
Specifically, we can define pick-any 7 D as

let {/ := (fresh-var)}
generalize-over I D

Thus, pick-any ensures that the aforementioned proviso is satisfied by generalizing over a
fresh variable. Either form can be used to derive universal quantifications, but pick-any is
almost always more convenient. The generalize-over construct is useful primarily when
writing methods for discovering proofs automatically.

5.2 Working with existential quantifications

5.2.1 Deriving existential quantifications

If we know that 2 is an even number, then clearly we may conclude that there exists an
even number. Likewise, if we know—or have assumed—that box b is red, we may con-
clude that there exists a red box. In general, if we have {x — #}(p), we may conclude
(exists x . p).* This type of reasoning is known as existential generalization. In Athena,
existential generalization is performed by the binary method egen. The first argument to
egen is the existential quantification that we want to derive, say

(exists x . p). (5.15)

The second argument is a term # on the basis of which we are to infer (5.15). Specifically,
if {x — #}(p) is in the assumption base, then the call

4 Recall that {x — 7}(p) is the sentence obtained from p by replacing every free occurrence of x by # (renaming
as necessary to avoid variable capture).

fpmics 2016/9/20 10:19 Page 334 #358

334 CHAPTER 5. FIRST-ORDER LOGIC

(legen (exists x . p))

will derive the theorem (exists x . p). The idea here is that because p holds for the
object named by ¢, that is, because {x — 7}(p) is in the assumption base, we are entitled to
conclude that there is some object for which p holds. We might view the term 7 as evidence
for the existential claim at hand.

For instance, suppose that (even 2) is in the assumption base. Since we know that 2 is
even, we are entitled to conclude that there exists an even integer:

assert (even 2)
> (legen (exists x . even x) 2)

Theorem: (exists ?x:Int
(even ?x:1Int))

It is an error if the required evidence is not in the assumption base:
> clear-assumption-base

Assumption base cleared.

> (legen (exists x . even x) 2)

standard input:1:1: Error: Failed existential
generalization---the required witness sentence
(even 2)

is not in the assumption base.

5.2.2 Using existential quantifications

Suppose that we know—or that we have simply assumed—that an existential quantification
is true, so that some sentence of the form (exists x . p) is in the assumption base. How
can we put such a sentence to use, that is, how can we derive further conclusions with the
help of such a premise?

The answer is the technique of existential instantiation.” It is very commonly used in
mathematics, in the following general form:

We have it as a given that 3 x . p, so that p holds for some object. Let v be a name for such
an object (i.e., let v be a “witness” for the existential sentence 3 x . p, so that {x — v}(p) (5.16)
can be assumed to hold). Then ---D- - -

W

Common alternative names for it are existential specialization and existential elimination .

fpmics 2016/9/20 10:19 Page 335 #359

5.2. WORKING WITH EXISTENTIAL QUANTIFICATIONS 335

where D is a deduction that proceeds to derive some conclusion g with the aid of the
assumption {x — v}(p), along with whatever other assumptions are currently operative.
We refer to

dx.p

as the existential premise; v is called the witness variable; and the sentence {x — v}(p) is
called the witness hypothesis. We call D the body of the existential instantiation. It rep-
resents the scope of the witness hypothesis, as well as the scope of v. The conclusion ¢
derived by the body D becomes the result of the entire proof (5.16).

The following proof is a simple and fairly typical example of how existential instanti-
ation is used in practice. (We use conventional notation for this example, since this is a
generic, language-agnostic illustration of the technique.) The proposition of interest here
is that for all integers n, if even(n) then even(n + 2) (i.e., if n is even, then so is n + 2). Let
us say that the unary predicate even is defined as follows:

Vi.even(i) =3j.i=2-)). (5.17)
The proof relies on the lemma
Vxy.x- 0+ =x-y+x) (5.18)

and proceeds as follows:

Pick any » and assume even(n). Then, by (5.17), we infer (3. n =2 -j), that is, there
is some number, which, when multiplied by 2, yields n. Let k stand for such a number,
so that n =2 - k. Then, by congruence, n+2 = (2-k) + 2. But, by (5.18), 2-k)+2 =
2 - (k+ 1), hence, by the transitivity of equality, n+2 =2 - (k+ 1). Therefore, by exis-
tential generalization, we obtain (3m . n+2 =2 - m), and so, from (5.17), we conclude
even(n+2).

We have italicized the existential elimination argument in the above proof. The existential
premise here is (3 j . n = 2 - j); the witness is the variable &; and the witness premise is the
equality n = 2 - k. The conclusion of the existential instantiation is even(n + 2).

There are some important caveats that must be observed to ensure that this type of rea-
soning, as outlined in (5.16), will not lead us astray. The witness v must serve as a dummy
placeholder—no special assumptions about it should be used. In particular, the body D
must not rely on any previous working assumptions that might happen to contain free
occurrences of v. Things can easily go wrong otherwise. Suppose, for example, that the
current assumption base contains the atom even(k), for some variable k, along with the
sentence (3 n . odd(n)). Now if we unwisely choose k as a witness for this existential
premise, we will obtain the witness hypothesis odd(k), and hence, in tandem with even(k),
we will be able to conclude that there is a number that is both even and odd. We will shortly
see how Athena manages to enforce this proviso automatically, so that users do not need

fpmics 2016/9/20 10:19 Page 336 #360

336 CHAPTER 5. FIRST-ORDER LOGIC

to be concerned with it. Further, to ensure that the witness v is only used as a temporary
dummy, the final conclusion ¢ should not depend on v in any essential way. Specifically, ¢
should not contain any free occurrences of v.

Existential instantiations in Athena are performed by deductions of the form

pick-witness [/ for F' D (5.19)

where / is a name that will be bound to the witness variable, F' is a phrase that evaluates
to an existential premise (exists x: S . p), and D is the body.® To evaluate (5.19) in an
assumption base S, we first make sure that the existential premise (exists x:S . p) is
indeed in f; if not, evaluation halts and a relevant error is reported. Assuming that the
existential premise is in f#, we begin by generating a fresh variable v: S, which will serve
as the actual witness variable. We then construct the witness hypothesis, call it p’, obtained
from p by replacing every free occurrence of x: S by the witness v:S. Finally, we evaluate
the body D in the augmented assumption base S U {p'} and in an environment in which
the name / is bound to the witness variable v:S. If and when that evaluation produces a
conclusion ¢, we return ¢ as the result of the entire proof (5.19), provided that ¢ does not
contain any free occurrences of v:S (it is an error if it does). The fact that the witness
variable v:S is freshly generated is what guarantees that the body D will not be able to
rely on any special assumptions about it. The freshness of v:S along with the explicit
proviso that it must not occur in the conclusion g ensures that the witness is used only as a
temporary placeholder. Bear in mind that 7 itself in (5.19) is not an Athena term variable;
it is a name—an identifier—that will come to denote a fresh Athena variable (the witness
variable v:S) in the course of evaluating the body D.
As an example, let us use existential instantiation to derive the tautology

((exists x . ~ prime x) ==> ~ forall x . prime x)

> assume hyp := (exists x . ~ prime x)
pick-witness w for hyp # We now have (~ prime w)
(!by-contradiction (~ forall x . prime x)
assume all-prime := (forall x . prime x)
let {prime-w := (luspec all-prime w)}

(!absurd prime-w (~ prime w)))

Theorem: (if (exists ?x:Int
(not (prime ?x:Int)))
(not (forall 7?x:Int
(prime ?x:Int))))

As an example of an incorrect use of pick-witness, the following violates the proviso that
the witness variable must not appear in the conclusion:

6 It is an error if the evaluation of F' produces any value other than an existentially quantified sentence.

fpmics 2016/9/20 10:19 Page 337 #361

5.2. WORKING WITH EXISTENTIAL QUANTIFICATIONS 337

> assume hyp := (exists x . prime x)
pick-witness w for hyp
(!claim (prime w))

input prompt:2:5: Error: Failed existential instantiation---the
witness variable occurs free in the resulting sentence.

Another potential error is that the existential premise is not in the assumption base:

> pick-witness w for (exists x . x =/= x)
(!'true-intro)

input prompt:1:22: Error: Existential sentence to be instantiated
is not in the assumption base:
(exists ?x:'S

(not (= ?x:'S ?x:'S))).

When the existential premise has multiple consecutive existentially quantified variables,
we can abbreviate nested pick-witness deductions with the form
pick-witnesses I;---1, for F D

where F is a phrase that evaluates to an existential premise (exists xj---x; . p) with
m > n. The semantics of pick-witnesses is given by desugaring to pick-witness. For
instance,

pick-witnesses 1 I for (exists x; x2 . p) D

is an abbreviation for
pick-witness I} for (exists x| xp . p)

pick-witness I, for (exists xp . {x; = I1}(p))
D

Here is a sample proof that (exists x y . x < y) implies (exists y x . x < y):

> assume hyp := (exists x y . x <y)
pick-witnesses wl w2 for hyp # This gives (wl < w2)
let {_ := (!egen (exists x . x < w2) wl)}

(legen (exists y x . x < y) w2);;

Theorem: (if (exists ?x:Real
(exists ?y:Real
(< ?x:Real ?y:Real)))
(exists ?y:Real
(exists ?x:Real
(< ?x:Real ?y:Real))))

fpmics 2016/9/20 10:19 Page 338 #362

338 CHAPTER 5. FIRST-ORDER LOGIC

Sometimes it is convenient to give a name to the witness hypothesis and then refer to it
by that name inside the body of the pick-witness. This can be done by inserting a name
(an identifier) before the body D of the pick-witness. That identifier will then refer to the
witness premise inside D. For example, the proof

pick-witness w (exists x . x = x) wp D

will give the name wp to the witness premise, so that every free occurrence of wp within
D will refer to the witness premise. Thus, for instance, one of our earlier proofs could be
written as follows:

> assume hyp := (exists x . ~ prime x)
pick-witness w for hyp -prime-w
We now have -prime-w := (~ P w) in the a.b.
(!by-contradiction (~ forall x . prime x)
assume all-prime := (forall x . prime x)
let {prime-w := (luspec all-prime w)}

(!absurd prime-w -prime-w))
Theorem: (if (exists ?x:Int
(not (prime ?x:Int)))
(not (forall 7?x:Int
(prime ?x:Int))))

This can also be done for pick-witnesses deductions; an identifier appearing right before
the body will denote the witness premise. For example:

pick-witnesses w1l w2 for (exists x y . x =/=y) wp D.

Note that, intuitively, existential quantifications correspond to (potentially infinite) dis-
junctions. For instance, let B be a unary predicate on Boolean:

declare B: [Boolean] -> Boolean

To say that there is some boolean value for which B holds:
(exists ?x:Boolean . B ?x:Boolean)) (5.20)

is simply to say that B holds for true or B holds for false:
(B true | B false). (5.21)

Sentences (5.20) and (5.21) have the exact same content. Likewise, to say that there is
some integer that is prime:

(exists ?x:Int . prime ?x:Int) (5.22)

fpmics 2016/9/20 10:19 Page 339 #363

5.2. WORKING WITH EXISTENTIAL QUANTIFICATIONS 339

is really the same as saying that 0 is prime or 1 is prime, or —1 is prime, or 2 is prime, or
—2 is prime, and so on:

(prime @ | prime 1 | prime (- 1) | prime 2 | ---). (5.23)

Accordingly, we should expect existential elimination and introduction to intuitively cor-
respond to disjunction elimination and introduction, respectively. Consider, for example,
an instantiation of the existential claim that B holds for some boolean value:

pick-witness / for (exists x . B x)
D

Such a proof could also be expressed as a disjunction elimination:

(!cases (B true | B false)
assume (B true)
Dy
assume (B false)
Dy)

The chief difference is that the first proof is more efficient because it does not consider
every possible case separately. Rather, it abstracts what reasoning is common to D and D,
into what is essentially one single method parameterized over /. Also, the first proof does
not use an explicit assume, as the insertion of the witness hypothesis into the assumption
base is performed automatically. Thus, we can explain the evaluations of D; and D; as
the evaluation of one and the same deduction, D, but under two different lexical bindings:
with 7 denoting true in the first case and with / denoting false in the second. Indeed, if
we only needed to work with finite domains, then we could formally define the evalua-
tion semantics of pick-witness proofs by desugaring such proofs into cases applications.
Such desugaring is not possible in the general case, which includes infinite domains, but
nevertheless it is still instructive to keep the analogy between existential instantiation and
disjunction elimination in mind.

We close by mentioning an alternative mechanism for existential instantiation, the syntax
form

(with-witness £ F D).

The expression £ must produce an Athena variable v, which will be used as the witness
variable of the existential instantiation. Accordingly, this variable must not have any free
occurrences in the assumption base. The phrase F' must produce an existential quantifica-
tion (exists x . p), which will serve as the existential premise and must therefore be in
the assumption base. Finally, D is the body of the instantiation, which, when evaluated in
the given assumption base augmented with the witness hypothesis {x — v}(p), must yield a
conclusion ¢ that does not contain any free occurrences of v. The sentence g then becomes
the conclusion of the entire existential instantiation.

fpmics 2016/9/20 10:19 Page 340 #364

340 CHAPTER 5. FIRST-ORDER LOGIC

This is, essentially, a more primitive version of pick-witness. It stands to pick-witness
in the same relationship that generalize-over stands to pick-any. Specifically, we can
desugar pick-witness / for F D as

let {/ := (fresh-var)}
(with-witness / F D)

5.3 Some examples

In this section we present some simple examples of quantifier reasoning illustrating the
mechanisms introduced in the previous section. We first write each derived sentence in
conventional notation, and then we show how to write and, more importantly, how to prove
that sentence in Athena.

(Vx. P(x) A Q(x)) = (Vy. P() A (Vy . O()

assume hyp := (forall x . P x & Q x)
let {all-P := pick-any y:Object
conclude (P y)
(!left-and (!uspec hyp y));
all-Q := pick-any y:0bject
conclude (Q y)
(!'right-and (!uspec hyp y))}
(!'both all-P all-Q)

@x. P)AQX) = Fy. PO A (Fy. 00)

assume hyp := (exists x . P x & Q x)
pick-witness w for hyp wp # we now have wp := (P w & Q w) in the a.b.
let {Pw := (!left-and wp);
Qw := (!right-and wp);
some-P := (legen (exists y . P y) w);
some-Q := (legen (exists y . Q y) w)}

(!'both some-P some-Q)

(Vx.Px) VvV (Vx. QW)= (Vy.Py) Vv O()

assume hyp := ((forall x . P x) | (forall x . Q x))
pick-any y
(!cases hyp
assume case-1 := (forall x . P x)
conclude (P y | Q vy)
(leither (luspec case-1 y) (Q y))
assume case-2 := (forall x . Q x)

fpmics 2016/9/20 10:19 Page 341 #365

341

5.3. SOME EXAMPLES

conclude (P y | Q y)
(leither (P y) (!uspec case-2 y)))

@x.Px)VOX)=3x.Px)V(@x.0)

:= (exists x . P x | Q x)

assume hyp

pick-witness w for hyp wp

we now have wp := (P w | Q w) in the a.b.
(lcases (P w | Q w)

assume (P w)
let {some-P := (legen (exists x . P x) w)}
(!either some-P (exists x . Q x))
assume (Q w)
let {some-Q := (legen (exists x . Q x) w)}
P x) some-Q))

(leither (exists x .

Vx.Px)=0x)= ((vVx.PKx)= Vx.0KX))

P x ==> Q x)

:= (forall x .
P x)

assume hypl :=
assume hyp2 := (forall x .
pick-any a
conclude (Q a)
let {Pa=>Qa := (!uspec hypl a);
Pa := (!luspec hyp2 a)}
(!'mp Pa=>Qa Pa)

Note that, strictly speaking, the theorem produced by this proofis printed as
(Vx.Px)=0(x) = ((Vx.PKx) = (Va.Q(a)))

but this is of course equivalent (in fact identical, for deductive purposes) to:
(Vx. Px)=0(x) = ((Vx. Pkx) = (Vx.0K)))

We could easily produce the latter representation if we so prefer, either by using x in place
of a in the above proof, or else by wrapping the present pick-any proof inside a conclude

that is quantified over x:
P x ==> Q x)

:= (forall x .
P x)

:= (forall x .
Q x)

assume hypl
assume hyp?2
conclude (forall x .
pick-any a
conclude (Q a)
let {Pa=>Qa :=
Pa := (!uspec hyp2 a)}

(!'mp Pa=>Qa Pa)

= (luspec hypl a);

fpmics 2016/9/20 10:19 Page 342 #366

342 CHAPTER 5. FIRST-ORDER LOGIC

(@x.PX))V(Ex.00)=3x.Px VOIKX)

assume hyp := ((exists x . P x) | (exists x . Q x))
let {goal := (exists x . P x | Q x)}
(!cases
hyp
assume case-1 := (exists x . P x)

pick-witness w for case-1 # we now have (P w) in the a.b.
let {Pw|Qw := (!either (P w) (Q w))}
(legen goal w)

assume case-2 := (exists x . Q x)
pick-witness w for case-2 # we now have (Q w) in the a.b.
let {Pw|Qw := (!either (P w) (Q w))}

(legen goal w))

A closer look at this proof reveals some duplication of effort: The reasoning is essentially
identical for both cases, yet it is repeated almost verbatim for each case separately. We can
easily factor out the commonalities in a single method that we can then reuse accordingly.
The savings afforded by such abstraction are minimal in this case (as the proof'is so small
to begin with), but it is nevertheless instructive to carry out the factoring anyway. In larger
proofs the benefits can be more substantial:

assume hyp := ((exists x . P x) | (exists x . Q x))
let {goal := (exists x . P x | Q x);
M := method (ex-premise)

assume ex-premise
pick-witness w for ex-premise
let {Pw|Qw := (!either (P w) (Q w))}
(!'egen goal w)}
(!cases hyp (!M (exists x . P x))
(!M (exists x . Q x)))

The next section presents several more examples of custom-written first-order methods.

Exercise 5.2: Each of the following listings asserts a number (possibly zero) of premises

and defines a goal:
Listing 5.3.1

assert premise-1 := (forall x y . x R y)

define goal := (forall x . x R x)

Listing 5.3.2

define goal := (forall x . exists y . x =y)

fpmics 2016/9/20 10:19 Page 343 #367

5.3. SOME EXAMPLES

assert
assert

define

assert
assert

define

assert
assert

define

assert
assert

define

assert
assert

define

define

premise-1
premise-2

goal :=

(exists y

premise-1
premise-2

goal :=

(exists x

premise-1
premise-2

goal :=

(~

premise-1
premise-2

goal :=

(exists x

premise-1
premise-2

goal :=

goal :=

((exists x

P

((forall x

X

Listing 5.3.3

(forall x . P x | Q x ==> S x)
(exists y . Q y)

(exists x
(forall y

(forall x

S

<

Listing 5.3.4

P x &Q
Py ==>

S x & Q x)

I |

x)
Sy)

Listing 5.3.5

(~ exists x . Q x)

P x ==>

exists x . P x)

(forall x
(exists x

Q x)

Listing 5.3.6

P x ==>
S x & ~

S x & ~ P x)

Q x)
Q x)

Listing 5.3.7

(forall x . x R x ==

(exists x

Q x)

Q x) ==> ~ exists z

> P x)

Listing 5.3.8

<==> (exists x

P x)

Derive each goal from the corresponding premises.

P x ==> ~ exists y . Q y)

z R z)

(exists x

Q x))

343

