fpmics 2016/9/20 10:19 Page 62 #86

62 CHAPTER 2. INTRODUCTION TO ATHENA

would represent the identity function.'®

2.10 Expressions and deductions

In this section we discuss some common kinds of expressions and deductions. The most
basic kind of expression is a procedure call, or procedure application. The general syntax
form of a procedure call is:

(EFy---Fp) (2.6)

for n > 0, where E is an expression whose value must be a procedure and the arguments
Fy---F, are phrases whose values become the inputs to that procedure.

Similarly, the most basic kind of deduction is a method call, or method application. The
syntax form of a method call is

(apply-method E Fp---F}) 2.7)

where E is an expression that must denote a method M and the arguments F'y - - - Fy,, n > 0,
are phrases whose values will become the inputs to M. The exclamation mark ! is typically
used as a shorthand for the reserved word apply-method, so the most common syntax form
of a method call is this:

(VE Fy---Fy). (2.8)

Observe that both in (2.6) and in (2.7) the arguments are phrases Fi,...,F,, which
means that they can be either deductions or expressions.!” By contrast, that which gets
applied in both cases must be the value of an expression E, the syntactic item immediately
preceding the arguments F - - - F;,. The reason why we have an expression E there and
not a phrase F is that deductions can only produce sentences, and what we need in that
position is something that can be applied to arguments—either a procedure or a method,
not a sentence.

To evaluate a method call of the form (2.7) in an assumption base £, we first need to
evaluate £ in f and obtain some method M from it; then we evaluate each argument phrase
Fjin f, obtaining some value V; from it (with a small but important twist that we discuss
in Section 2.10.2); and finally we apply the method M to the argument values V7,..., V.
What exactly is a method? A method can be viewed as the deductive analogue of a pro-
cedure: It takes a number of input values, carries out an arbitrarily long proof involving
those values, and eventually yields a certain conclusion p. Alternatively, the method might
(a) halt with an error message, or (b) diverge (i.e., get into an infinite loop). These are the
only three possibilities for the outcome of a method application.

18 Note that Lambda is different from the keyword lambda. Athena identifiers are case-sensitive.

19 Recall that a phrase F is either an expression £ or a deduction D.

[N T

fpmics 2016/9/20 10:19 Page 63 #87

2.10. EXPRESSIONS AND DEDUCTIONS 63

The simplest available method is the nullary method true-intro. Its result is always the
constant true, no matter what the assumption base is:

> (!true-intro)
Theorem: true

The next simplest method is the unary reiteration method claim. This method takes an
arbitrary sentence p as input, and if p is in the assumption base, then it simply returns it
back as the output:

assert true
> (!claim true)

Theorem: true

Note that the result of any deduction D is always reported as a theorem. That is because
the result of D is guaranteed to be a logical consequence of the assumption base in which
D was evaluated.

Every theorem produced by evaluating a deduction at the top level is automatically added
to the global assumption base. In this case, of course, the global assumption base already
contains the sentence true (because we asserted it on line 1), so adding the theorem true
to it will not change its contents.

Claiming a sentence p will succeed if and only if p itself is in the assumption base.
Suppose, for instance, that starting from an empty assumption base we assert p and then
we claim (p | p). We cannot expect that claim to succeed, despite the fact that (p | p) is
logically equivalent to p. The point here is that claim will check to see if its input sentence
p is in the assumption base, not whether the assumption base contains some sentences from
which p could be inferred, or some sentence that is equivalent to p. For example:

clear-assumption-base
assert true

> (!claim true)

Theorem: true

> (!claim (true | true))

Error, standard input, 1.9: Failed application of claim---the sentence
(or true true) is not in the assumption base.

More precisely, the identity required by claim is alpha-equivalence. That is, applying claim
to p will succeed iff the assumption base contains a sentence that is alpha-equivalent to p:

fpmics 2016/9/20 10:19 Page 64 #88

64 CHAPTER 2. INTRODUCTION TO ATHENA

assert (forall ?x . ?x = ?x)
> (!claim (forall ?y . ?y = ?y))

Theorem: (forall ?y:'S
(= ?2y:'S ?y:'S))

Alpha-equivalence is the relevant notion of identity for all primitive Athena methods.

Most other primitive Athena methods are either introduction or elimination methods for
the various logical connectives and quantifiers. We describe their names and semantics
in detail in chapters 4 and 5, and also in Appendix A, but we will give a brief preview
here, starting with the methods for conjunction introduction and elimination. Conjunction
introduction is performed by the binary method both, which takes any two sentences p
and ¢, and provided that both of them are in the assumption base (again, up to alpha-
equivalence), it produces the conclusion (and p ¢):

declare A, B, C: Boolean
assert A, B

> (!both A B)

Theorem: (and A B)

Conjunction elimination is performed by the two unary methods left-and and right-and.
The former takes a conjunction (and p; p) and returns pq, provided that (and p; p2)
is in the assumption base (an error occurs otherwise). The method right-and behaves
likewise, except that it produces the right conjunct instead of the left:

clear-assumption-base

assert (A & B)

> (!left-and (A & B))

Theorem: A

> (!right-and (A & B))
Theorem: B

> (!right-and (C & B))

Error, standard input, 1.2: Failed application of right-and---the sentence
(and C B) is not in the assumption base.

> (lleft-and (A | B))

fpmics 2016/9/20 10:19 Page 65 #89

2.10. EXPRESSIONS AND DEDUCTIONS 65

Error, standard input, 1.2: Failed application of left-and---the given sentence
must be a conjunction, but here it was a disjunction: (or A B).

Another unary primitive method is dn, which performs double-negation elimination. It
takes a premise p of the form (not (not ¢)), and provided that p is in the assumption
base, it returns ¢:

assert p := (~ ~ A)
> (ldn p)
Theorem: A

There are several kinds of deductions beyond method applications. In what follows we
present a brief survey of the most common deductive forms other than method applications.

2.10.1 Compositions

IO S T

One of the most fundamental proof mechanisms is composition, or sequencing: Assem-
bling a number of deductions Dy,...,D,, n > 0, to form the compound deduction

{D1; -+ ;Dpd. (2.9

To evaluate such a deduction in an assumption base S, we first evaluate Dy in f. If and
when the evaluation of D results in a conclusion p1, we go on to evaluate D; in U {p1},
that is, in S augmented with the conclusion of the first deduction. When we obtain the
conclusion p> of Dy, we go on to evaluate D3 in

B U{p1,p2},

namely, in the initial assumption base augmented with the conclusions of the first two
deductions; and so on.2’ Thus, each deduction Dij41 is evaluated in an assumption base
that incorporates the conclusions of all preceding deductions D1, ..., D;. The conclusion
of each intermediate deduction thereby serves as a lemma that is available to all subsequent
deductions. The conclusion of the last deduction D,, is finally returned as the conclusion
of the entire sequence. For example, suppose we evaluate the following code in the empty
assumption base @:

> assert (A & B)
The sentence

(and A B)
has been added to the assumption base.

20 Strictly speaking, we should say that D; is evaluated in a copy of f augmented with p1; D3 is evaluated
in a copy of f augmented with p; and p,; and so on. We don’t statefully (destructively) add each intermediate
conclusion to the initial assumption base itself.

fpmics 2016/9/20 10:19 Page 66 #90

66 CHAPTER 2. INTRODUCTION TO ATHENA
> {
(!left-and (A & B)); # This gives A
(!'right-and (A & B)); # This gives B
(!both B A) # And finally, (B & A)
3

Theorem: (and B A)

The assert directive adds the conjunction (A & B) to the initially empty assumption base.
Accordingly, the starting assumption base in which the proof sequence on lines 7—11 will
be evaluated is f = {(A & B)}. The proof sequence itself consists of three method calls.
The first one, the application of left-and to (A & B) on line 8, successfully obtains the
conclusion A, because the required premise (A & B) is in the assumption base in which
this application is evaluated. Then the second element of the sequence, the application
of right-and on line 9, is evaluated in the starting assumption base f augmented with
the conclusion of the first deduction, that is, in {(A & B),A}. That yields the conclusion
B. Finally, we go on to evaluate the last element of the sequence, the application of both
on line 10. That application is evaluated in augmented with the conclusions of the two
previous deductions, that is, in
{(A & B),A,B).

Since both of its inputs are in the assumption base, both happily produces the conclu-
sion (B & A), which thus becomes the conclusion of the entire composition, reported as a
theorem on line 13.

At the end of the entire composite proof, only the final conclusion (B & A) is retained
and added to the starting assumption base §. The intermediate conclusions generated dur-
ing the evaluation of the composition (namely, the sentences A and B generated by the
left-and and right-and applications) are not retained. For instance, here is what we get
if we try to see whether A is in the assumption base immediately after the above:

> (holds? A)

Term: false

In general, whenever we evaluate a deduction D at the top level and obtain a result p:
> D

Theorem: p

only the conclusion p is added to the global assumption base. Any auxiliary conclusions
derived in the course of evaluating D are discarded.

As you might have noticed, when we talk about evaluating a deduction D we often
speak of the contents of “the assumption base.” For instance, we say that evaluating an

fpmics 2016/9/20 10:19 Page 67 #91

2.10. EXPRESSIONS AND DEDUCTIONS 67

application of left-and to a sentence (p & ¢) produces the conclusion p provided that
the conjunction (p & ¢) is in “the assumption base.” This does not necessarily refer to
the global assumption base that Athena maintains at the top level. Rather, it refers to the
assumption base in which the deduction D is being evaluated, which may or may not be the
global assumption base. For instance, if D happens to be the third member of a composite
deduction, then the assumption base in which D will be evaluated will not be the global
assumption base; it will be some superset of it. We will continue to speak simply of “the
assumption base” in order to keep the exposition simple, but this is an important point to
keep in mind.

We refer to a deduction of the form (2.9) as an inference block. Each D; is a step of the
block. This is not reflected in (2.9), but in fact a step does not have to be a deduction D;
it may be an expression E. So, in general, a step of an inference block can be an arbitrary
phrase F. The very last step, however, must be a deduction.

Even more generally, a step of an inference block may be named, so that we can refer to
the result of that step later on in the block by its given name. A named step is of the form
I := F, where [is an identifier or the wildcard pattern (underscore), and F is a phrase.
Using this feature, we could express the above proof block as follows:

{
p1 (!left-and A-and-B);
p2 := (!right-and A-and-B);
(!'both p2 p1)

}

However, we encourage the use of let deductions instead of inference blocks; we will
discuss let shortly (Section 2.10.3). A let proof can do anything that an inference block
can do, but it is more structured and usually results in more readable code.

2.10.2 Nested method calls

Procedure calls can be nested, that is, the arguments to a procedure can themselves be
procedure calls. This is a common feature of all higher-level programming languages, and
a style that is especially emphasized in functional languages. Similarly, the arguments to a
method can themselves be method calls or other deductions. (Arguments to a method can
also be arbitrary expressions.) Suppose that a deduction D appears as an argument to an
application of some method M:

(M ---D--).

To evaluate such a method call in an assumption base f, we first need to evaluate every
argument in f; in particular, we will need to evaluate D in S, obtaining from it some
conclusion p. Now, when all the arguments have been evaluated and we are finally ready
to apply M to their respective values, that application will occur in S augmented with p.

fpmics 2016/9/20 10:19 Page 68 #92

68 CHAPTER 2. INTRODUCTION TO ATHENA

Thus, the conclusion of D will be available as a lemma by the time we come to apply M.
This is, therefore, a basic mechanism for lemma formation, i.e., for proof composition.
For example, suppose we have defined conj as (A & (B & C)) and consider the deduc-
tion
(!left-and (!right-and conj)) (2.10)

in an assumption base f that contains only the premise conj:
p={s& (B&CN}L

Here, the deduction (!right-and conj) appears directly as an argument to left-and. To
evaluate (2.10) in g, we begin by evaluating the argument (!right-and conj) in §. That
will successfully produce the conclusion (B & C), since the required premise is in 5. We
are now ready to apply the outer method left-and to (B & C); but this application will
take place in f augmented with (B & C), that is, in the assumption base

B=BU{B&O}={(A& (B&,BEO,
and hence it will successfully produce the conclusion B:
clear-assumption-base
assert conj := (A & (B & C))
> (!left-and (!right-and conj))
Theorem: B

In general, every time a deduction appears as an argument to a method call, the conclusion
of that deduction will appear in the assumption base in which the method will be applied.

2.10.3 Let expressions and deductions

Composing expressions with nested procedure calls is common in the functional style of
programming, but Athena also allows for a more structured style using let expressions,
which let us name the results of intermediate computations. Similarly, in addition to com-
posing deductions with nested method calls, Athena also permits let deductions, which
likewise allow for naming intermediate results. The most common syntax form of the let
construct is:*!

let (| :=Fy; -+ 31, :=Fy} F (2.11)

where /1, ...,1, are identifiers and F1,--- ,F), and F are phrases. If F', which is called the
body of the let construct, is an expression, then so is the whole let construct. And if the

21 We will see later (in Appendix A) that more general patterns can appear in place of the identifiers /1, ..., 1.

fpmics 2016/9/20 10:19 Page 69 #93

2.10. EXPRESSIONS AND DEDUCTIONS 69

body F is a deduction, then the whole let construct is also a deduction. So whether or
not (2.11) is a deduction depends entirely on whether or not the body F is a deduction.

An expression or deduction of this form is evaluated in a given assumption base f as
follows: We first evaluate the phrase Fi. Now, F is either a deduction or an expression. If
it is an expression that produces a value V7, then we just bind the identifier /; to V1 and
move on to evaluate the next phrase, F», in . But if F] is a deduction that produces some
conclusion p1, we not only bind /; to p1, but we also go on to evaluate the next phrase F> in
S augmented with p1. We then do the same thing with F. If it is an expression, we simply
bind /; to the value of F and proceed to evaluate F3; but if it is a deduction, we bind /> to
the conclusion of F, call it p, and then move on to evaluate F3 in f augmented with p; and
p2. Thus, the conclusion of every intermediate deduction becomes available as a lemma
to all subsequent deductions, including the body F when that is a deduction. Moreover,
if the conclusion of an intermediate deduction happens to be a conjunction p;, then all
the conjuncts of p; (and their conjuncts, and so on) are also inserted in the assumption
base before moving on to subsequent deductions, and hence they also become available as
lemmas.

Here is an example of a let expression:

> let { a := 1;
b := (a plus a)
3
(b times b)
Term: 4

Here, (a plus a) is evaluated with a bound to 1, producing 2; b is then bound to 2, so the
body (b times b) evaluates to 4. The entire let phrase is an expression because the body
(b times b) is an expression (a procedure application, specifically).

An example of a let deduction is:

assert hyp := (male peter & female ann)
> let { left := (!left-and hyp);
right := (!right-and hyp)
3

(!both right left)

Theorem: (and (female ann)
(male peter))

Here the call to both succeeds precisely because it is evaluated in an assumption base
that contains the results of the two intermediate deductions—the calls to left-and and
right-and. The entire let phrase is a deduction because its body is a deduction (a method
application, specifically).

fpmics 2016/9/20 10:19 Page 70 #94

70 CHAPTER 2. INTRODUCTION TO ATHENA

In the expression example, all of the phrases involved are expressions, and in the deduc-
tion example all of the phrases are deductions. But any mixture of expressions and deduc-
tions is allowed. For example,

assert hyp := (A & B)

> let { goal := (B & A);
_ := (print "Proving: " goal);
_ = (!right-and hyp); # this proof step deduces B
_ := (!left-and hyp) } # and this one derives A

('both B A)
Proving:
(and B A)

Theorem: (and B A)

This example also illustrates that when we do not care to give a name to the result of an
intermediate phrase F;, we can use the wildcard pattern _ as the corresponding identifier.

2.10.4 Conclusion-annotated deductions

Sometimes a proof can be made clearer if we announce its intended conclusion ahead of
time. This is common in practice. Authors often say “and now we derive p as follows:
---” or “p follows by ---.” In Athena such annotations can be made with the conclude
construct, whose syntax is conclude p D. Here D is an arbitrary deduction and p is its
intended conclusion.

To evaluate a deduction of this form in an assumption base £, we first evaluate D in . If
and when we obtain a conclusion ¢, we check to ensure that ¢ is the same as the expected
conclusion p (up to alpha-equivalence). If so, we simply return p as the final result. If not,
we report an error to the effect that the conclusion was different from what was announced:

assert p := (A & B)

> conclude A
(!left-and p)

Theorem: A

> conclude B
(!left-and p)

standard input:1:2: Error: Failed conclusion annotation.
The expected conclusion was:

B

but the obtained result was:

A.

fpmics 2016/9/20 10:19 Page 71 #95

2.10. EXPRESSIONS AND DEDUCTIONS 71

In its full generality, the syntax of this construct is conclude E D, where E is an arbitrary
expression that denotes a sentence. This means that £ may spawn an arbitrary amount of
computation, as long as it eventually produces a sentence p. We then proceed normally
by evaluating D to get a conclusion ¢ and then comparing p and ¢ for alpha-equivalence.
In addition, a name / may optionally be given to the conclusion annotation, whose scope
becomes the body D:

conclude / :=F D.

This is often useful with top-level uses of conclude, when we prove a theorem and define
its name at the same time:
conclude plus-commutativity :=

(forall ?2x ?y . ?2x + 2?2y = 2y + ?x)
D

2.10.5 Conditional expressions and deductions

In both expressions and deductions, conditional branching is performed with the check
construct. The syntax of a check expression is

check (Fy =>E; | -+ | Fy=>Ey) (2.12)

where the F; => E; pairs are the clauses of (2.12), with each clause consisting of a condition
F;and a corresponding body expression E;. A check deduction has the same form, but with
deductions D; as bodies of the clauses:

check {F1=>D; | --- | F,,=>D,}. (2.13)

To evaluate a check expression or deduction, we evaluate the conditions F,.. ., F,, in that
order. If and when the evaluation of some F; produces true, we evaluate the corresponding
body E; or D; and return its result as the result of the entire expression or deduction. The
last condition, F',,, may be the keyword else, which is treated as though it were true. It is
an error if no F; produces true and there is no else clause at the end.

assert A
> check {(holds? false) => 1 | (holds? A) => 2 | else => 3}

Term: 2

fpmics 2016/9/20 10:19 Page 72 #96

72 CHAPTER 2. INTRODUCTION TO ATHENA

2.10.6 Pattern-matching expressions and deductions

Another form of conditional branching is provided by pattern-matching expressions or
deductions. A pattern-matching expression has the form

match F {my=>E; | -+ | m,=>E,} (2.14)

where the phrase F is called the discriminant, while the z; => E; pairs are the clauses of
(2.14), with each clause consisting of a pattern r; and a corresponding body expression E;.
For a description of the various forms of patterns and the details of the pattern-matching
algorithm, see Appendix A.4; additional discussion and examples can be found in this
chapter in Section 2.11.

The syntax of a pattern-matching deduction is the same, except that the body of each
clause must be a deduction:

match F {m1=>D1 | --- | @, =>Dy3}. (2.15)

A pattern-matching expression or deduction is evaluated in a given environment p and
assumption base £ as follows. We first evaluate the discriminant F, obtaining from it a
value V. We then try to match V against the given patterns 71, ..., 7,, in that order. If and
when we succeed in matching V' against some 7;, resulting in a number of bindings, we
go on to evaluate the corresponding body E; or D; in p augmented with these bindings,
and in 3.%> The result produced by that evaluation becomes the result of the entire pattern-
matching expression or deduction. An error occurs if the discriminant value 7 does not
match any of the patterns.

> match [1 2] {
[1 => 99
| (list-of h _) => h
3

Term: 1

> match [1 2] {
[1 => (!claim false)
| (list-of _ _) => (!true-intro)
3

Theorem: true

22 If the discriminant F is a deduction that produces a conclusion p, and the body is a deduction D;, then D; will
be evaluated in f U {p}. In that case, therefore, the conclusion of the discriminant will serve as a lemma during
the evaluation of D;.

fpmics 2016/9/20 10:19 Page 73 #97

2.10. EXPRESSIONS AND DEDUCTIONS 73

2.10.7 Backtracking expressions and deductions

A form of backtracking is provided by try expressions and deductions. A try expression
has the form

try {E1 | ... | En} (2.16)

where n > 0. Such an expression does what its name implies: it tries to evaluate each
expression E; in turn, i = 1,...,n, until one succeeds, i.e., until some E; is found that
successfully produces a value V;. At that point V; is returned as the result of the entire try
expression. It is an error if all » expressions fail. For example:

> try { (4 div @) | 2 }

Term: 2

> try { (4 div @) | 25 | (head [1) }

Term: 25

> try { (4 div @) | (head [1) 3}

standard input:1:2: Error: Try expression error; all alternatives failed.

A try deduction has the same form as (2.16), except that the alternatives are deductions
rather than expressions:

try {D1 | ... | Dy} (2.17)
for n > 0. For example:
> try { (!left-and false) |
(!true-intro) |
(!right-and (true ==> false))}

Theorem: true

> try { (!left-and false) |
(!right-and (true ==> false))}

standard input:1:2: Error: Try deduction error; all alternatives failed.

2.10.8 Defining procedures and methods

Users can define their own procedures with the 1lambda construct, and then use them as if
they were primitive procedures. For instance, here is a procedure that computes the square
of a given number:>3

23 For simplicity, we often use “number” synonymously with “numeric term” (i.e., a term of sort Int or Real).

fpmics 2016/9/20 10:19 Page 74 #98

74 CHAPTER 2. INTRODUCTION TO ATHENA

> define square := lambda (n) (n times n)
Procedure square defined.
> square
Procedure: square (defined at standard input:1:32)
> (square 4)
Term: 16
The general form of a 1ambda expression is
lambda (/1---1,) E (2.18)

where [- - - I,, are identifiers, called the formal parameters of the lambda expression, and
E is an expression, called the body of the 1ambda.

At the top level it is not necessary to define procedures with lambda. An alternative
notation is the following:

> define (square n) := (n times n)
Procedure square defined.
or in more traditional Lisp notation:

(define (square n)
(times n n))

Any of these alternatives gives the name square to the procedure
lambda (n) (n times n).

However, it is possible to use the lambda construct directly, without giving a name to the
procedure it defines. In that case we say that the procedure is anonymous. This is partic-
ularly useful when we want to simply pass a procedure as an argument to another proce-
dure. For example, the built-in map procedure takes a procedure f as its first argument and
a list L as its second, and returns the list formed by applying f to each element of L. If
L=T[V,---V,], then

(map f L) =L V1) (f Vi),

For example, since we already defined square, we can write
> (map square [1 2 3 4 5])
List: [1 4 9 16 25]

But we could also pass the squaring procedure to map anonymously:

© % a9 e u kW —

fpmics 2016/9/20 10:19 Page 75 #99

2.10. EXPRESSIONS AND DEDUCTIONS 75

> (map lambda (n) (n times n)
[1 2 3 4 5])

List: [1 4 9 16 25]

Defining a procedure is often a process of abstraction: By making an expression the body
of a procedure, with some (not necessarily all) of the free identifiers of the expression as
formal parameters, we abstract it into a general algorithm that can be applied to other
inputs.

Likewise, a given deduction can often be abstracted into a general method that can
be applied to other inputs. Consider, for instance, a deduction that derives (B & A) from
(A & B):

let {_ := (!left-and (A & B));
_ := (!right-and (A & B))}
('both B A)

It should be clear that there is nothing special here about the atoms A and B. We can
replace them with any other sentences p and g and the reasoning will still go through,
as long as the conjunction (p & ¢) is in the assumption base. So, just like a particular
computation such as the squaring of 4 can be abstracted into a general squaring procedure
by replacing the constant 4 by a formal parameter like n, so we can turn the preceding
deduction into a general proof method as follows:

method (p q)

let {_ := (!left-and (p & q));
_ := (!right-and (p & q))}
(!'both q p)

This method can be applied to two arbitrary conjuncts p and ¢, and will produce the con-
clusion

(9 & p)

provided that the premise (p & ¢) is in the assumption base. While the method could be
applied anonymously, it is more convenient to give it a name first:

clear-assumption-base

define commute-and :=
method (p q)

let {_ := (!left-and (p & q));
_ := (!right-and (p & q))}
(!'both q p)

assert (B & C)

fpmics 2016/9/20 10:19 Page 76 #100

76 CHAPTER 2. INTRODUCTION TO ATHENA

> (!commute-and B C)
Theorem: (and C B)
> (!commute-and A B)

standard input:3:15: Error: Failed application of left-and---the sentence
(and A B) is not in the assumption base.

The last example failed because the necessary premise (A & B) was not in the assumption
base at the time when the method was applied.

These examples illustrate an important point: When a defined method M is called, M is
applied in the assumption base in which the call takes place, not the assumption base in
which M was defined.>* Here, when commute-and was defined (on lines 3—7), the assump-
tion base was empty. But by the time the call on line 11 is made, the assumption base
contains exactly one sentence, namely (B & C), so that is the logical context in which that
application of commute-and takes place. Later, when commute-and is called on line 15, the
assumption base contains exactly two sentences, (B & C) as well as (C & B), the theorem
produced by the preceding deduction.

A stylistic note: In order to make methods composable, it is preferable, when possible,
to define a method M so that its only inputs are the premises that it requires. Doing so
ensures that M can take deductions as arguments, which will serve to establish the required
premises prior to the application of M (by the semantics of nested method calls, as dis-
cussed in Section 2.10.2). Accordingly, the preceding method is better written so that it
takes the required conjunction as its sole input, rather than the two individual conjuncts as
two separate arguments:

define commute-and' :=
method (premise)
match premise {

(p & q) => let {_ := (!left-and premise);
_ := (!right-and premise)}
(!both q p)
3

This version uses pattern matching to take apart the given premise and retrieve the indi-
vidual conjuncts, after which the reasoning proceeds as before. The interface and style
of commute-and’ would normally be preferred over that of commute-and on composabil-
ity grounds. For instance, suppose the assumption base contains (~ (~ (A & B))) and we
want to derive (B & A). Using the second version, we can express the proofin a single line
by composing double negation and conjunction commutation:

24 We thus say that method closures have static lexical scoping but dynamic assumption scoping.

fpmics 2016/9/20 10:19 Page 77 #101

2.10. EXPRESSIONS AND DEDUCTIONS 77

assert premise := (~ ~ (A & B))
> (!commute-and' (!dn premise))
Theorem: (and B A)

Such composition is not possible with the former version.
The same alternative notation that is available for defining procedures can also be used
for defining methods: Instead of writing

define M := method (/y---1,) D
we can write
define (M I,---1,) := D,
or, in prefix,
(define (M Iy ---1,) D).

For instance:

> define (commute-and p q) :=

let {_ := (!left-and (p & q));
_ := (!right-and (p & g))}
(!both q p)

Method commute-and defined.

How does Athena know that this is a method and not a procedure (observe that it
responded by acknowledging that a method by the name of commute-and was defined)?
It can tell because the body (lines 2—4) is a deduction. And how can it tell that? In gen-
eral, how can we tell whether a given phrase F is an expression or a deduction? Recall
that expressions and deductions are distinct syntactic categories; there is one grammar for
expressions and another for deductions. In most cases, a deduction is indicated just by the
leading keyword (the reserved word with which the phrase begins):

apply-method (usually abbreviated as !)
assume

pick-any

pick-witness

pick-witnesses

generalize-over

with-witness

fpmics 2016/9/20 10:19 Page 78 #102

78 CHAPTER 2. INTRODUCTION TO ATHENA

suppose-absurd
conclude
by-induction
datatype-cases

(Don’t worry if you don’t yet recognize some of these; we will explain all of them in due
course.) In other cases, when the beginning keyword is let, letrec, check, match, or try,
it is necessary to peek inside the phrase. A let or letrec construct is a deduction if and
only if its body is. With a check or match phrase we simply look at its first clause body,
since the clause bodies must be all deductions or all expressions. With a try phrase, we
look at its first alternative. Finally, any phrase not covered by these rules (such as the unit
(), or a meta-identifier) is an expression. Thus, the question of whether a given phrase is a
deduction or an expression can be mechanically answered with a trivial computation, and
in Athena this is done at parsing time.

It is important to become proficient in making that determination, to be able to imme-
diately tell whether a given phrase is an expression or a deduction. Sometimes Athena
beginners are asked to write a proof D of some result and end up accidentally writing an
expression E instead. Readers are therefore advised to review the above guidelines and
then tackle Exercise 2.1 in order to develop this skill.

2.11 More on pattern matching

Recall that the general form of a match deduction is

match F {
T => Dj
| mp => Dy

where 71,..., T, are patterns and Dy, ..., D, are deductions. The phrase F' is the discrim-
inant whose value will be matched against the patterns. The pattern-matching algorithm is
described in detail in Section A.4, but some informal remarks and a few examples will be
useful at this point. We focus on match deductions here, but what we say will also apply to
expressions.

