
ically more efficient than others, exhibiting remarkably go

the most efficient SAT solver will suffer degraded performan



We can now define a procedure for determining satisfiability directly in terms of

However, as mentioned earlier, for satisfiable sentences we

has the following definition:





takes a while to finish. After all, the algorithm has to genera

, recognizing that such sentences are unsatisfiable, which,

, indicating that the input is unsatisfiable, or else an inter

satisfiable (every interpretation satisfies it); and that an

satisfies a clause satisfies
0, so an empty clause is unsatisfiable.

ranging from solving systems of equations to unification and



then any interpretation that satisfies

then it must be satisfied by any interpretation that satisfies



And finally, we can remove

with the empty list of clauses, which is trivially satisfiabl

emented very efficiently.

verify that its negation is unsatisfiable. If we negate this c

, a singleton consisting of the unsatisfiable empty clause.



is satisfiable iff
interpretation that satisfies , then it also satisfies

to a new interpretation that satisfies

satisfies the . And it satisfies all the remaining clauses as well (the remov
clauses containing pure literals), because it satisfies all

single interpretation that satisfies one set of clauses must
to true satisfies the reduced set of

set of clauses is satisfiable iff
the other is, so that the transformation “preserves satisfia

flag
flag





a selection more efficiently. However, we would then need to d

We look for the first unit clause we can find in the list. If we find one, then the



, we first need to convert

first argument is the sentence
identifier specifying the format of the output. This argumen

is specified, then the result of the conversion will be a list o

toms. More specifically, the
that should be thought of as a record with several fields. One

of the fields is , which is the actual list of clauses, and another field is
which is the aforementioned hash table. The remaining fields



format is convenient for preparing text files in DIMACS forma

defined as a wrapper call around

field of

Boolean Satisfiability Problem



field of the out-



Even quantified sentences can serve as atoms:



is much more efficient than the brute-
as unsatisfiable

ure would never finish given

conflict learning

Satisfiability

to CNF as needed, prepares a DIMACS file, feeds that file to a

ious meta-identifier fields. The main output field is
was found to be satisfiable. There is also an

field. When field is a hash table repre-

. Other fields in the output map include:

24 Usually some (possibly modified) version of MiniSat.



tified sentences. For example:



satisfiable, and if so, the

The satisfiability problem is not just of theoretical intere
sive, many other difficult combinatorial problems have fair

expressed fluidly and the integration with SAT solvers is sea

. If the answer is affirmative, we usually want the

With sufficient imagination on what counts as a color and what



The first question we need to answer is how to represent graphs

efficient; and another “internal” representation that is muchmore efficient. It will be easy to
convert from one to the other. The first representation encod
as a list of pairs of nodes, where a node is always identified by

could be easily modified to



that every node is assigned exactly one color.) And finally, f



2; the first expressing that
the first node

should not be red, which will be superfluous at





Let’s define it first as a list of edges (note that we don’t need t

The answer, as we see, is affirmative:



is defined as follows:



can quickly find colorings even for hundreds or thousands of n

ended to reflect the fact



the first of which (the underlined occurrence) is positive, w

r first a conditional

We can make the above discussion more precise by defining a bin

. A better specification is this: Return

, and define it as



and flip them (positives become negatives and vice

and flip them (since we view the antecedent as implicitly nega

28 Recall the definition of





, or if the inputs are not of the specified forms. (Note: You wil

is a specification for a proof, or a
is some assumption base, that is, a finite set of available ass

, provided that the various gaps in it have been filled, that is

together complete definitions for the various partial deduc

Knuth’s discussion on p. 309 of his classic first volume [


