fpmics 2016/9/20 10:19 Page 193 #217

4 Sentential Logic

HE FOCUS of this chapter is sentential logic . Sentential logic, also known as propo-
T sitional logic, is concerned with zero-order sentences, such a sentence being either
a boolean term, say, (zero < S zero), or the result of applying one of the five sentential
connectives (not, and, or, if, iff) to other zero-order sentences. Sentences that are boolean
terms are viewed as indivisible units having no internal structure; the only meaning they
are capable of having in sentential logic is a binary indication of truth or falsity, as will
become clear when we come to discuss sentential semantics in Section 4.12.

Mastering sentential logic is a crucial step in becoming able to write and understand
proofs in general, because sentential logic forms the core of more powerful systems such
as first-order logic, which we will study in subsequent chapters, and indeed lies at the
heart of mathematical reasoning in general. In this chapter we cover all available mech-
anisms for constructing proofs in sentential logic, giving numerous examples along the
way; we develop a library of some useful sentential proof methods; we touch on some
more advanced topics, such as recursive proof methods; and we introduce heuristics for
constructing such proofs. We also give a computational treatment of the semantics of sen-
tential logic, and we discuss some useful applications enabled by algorithms for solving
the satisfiability (SAT) problem. Finally, we develop a theorem-proving method for sen-
tential logic that will be used in the sequel. In all of the examples in this chapter we use the
identifiers A, B, C, D, E, etc., as boolean atoms. We assume that appropriate declarations of
these constants have already been made at the top level.

4.1 Working with the Boolean constants
The two Boolean atoms true and false are the ultimate foundations of sentential reason-
ing. We can derive true any time by applying the nullary method true-intro:
> (!true-intro)
Theorem: true

The constant false can only be derived if the assumption base is inconsistent. Specifically,
if the assumption base contains two contradictory sentences of the form p and (~ p), then
applying the binary method absurd to p and (~ p) will derive false:

> assume A
assume (~ A)
(labsurd A (~ A))

Theorem: (if A
(if (not A)

fpmics 2016/9/20 10:19 Page 194 #218

194 CHAPTER 4. SENTENTIAL LOGIC

false))

It is an error if the two arguments to absurd are not of the form p and (~ p), respectively,
or if either of them is not in the assumption base.
Finally, we can derive (~ false) at any time through the nullary method false-elim:

> (!false-elim)

Theorem: (not false)

4.2 Working with conjunctions

4.2.1 Using conjunctions: left-and and right-and

It is part and parcel of the meaning of a conjunction (p & ¢) that it logically implies each
of its two components, p and g. If it is raining and it is windy, it follows that it is raining;
and it also follows that it is windy. Accordingly, if we have a conjunction (p & ¢) in the
assumption base, we should be able to derive p from it, as well as g. In Athena, the former is
done by the unary method left-and. If the argument to left-and is a conjunction (p & ¢)
that is present in the assumption base, then the output will be the conclusion p:

assert p := (A & B)
> (!left-and p)
Theorem: A

There is a similar unary method, right-and, that does the same thing for the right compo-
nent of a conjunction: If (»p & ¢) is in the assumption base,

(!right-and (p & ¢))

will generate the conclusion ¢. It is an error if the argument to left-and or right-and is
not a conjunction, or if it is a conjunction that is not in the assumption base.

We say that left-and performs conjunction elimination,because it takes a conjunction
as input and detaches its left component. Likewise for right-and. Most primitive deductive
constructs of Athena either eliminate or else introduce one of the five logical connectives,
or one of the quantifiers, thereby serving as introduction or elimination mechanisms for the
corresponding connective or quantifier.

fpmics 2016/9/20 10:19 Page 195 #219

4.2. WORKING WITH CONJUNCTIONS 195

4.2.2 Deriving conjunctions: both

The introduction mechanism for conjunctions is the binary method both. Given any two
sentences p and ¢ in the assumption base, the method call

('both p @)

will produce the conclusion (p & ¢). As an example that uses all three methods deal-
ing with conjunctions, consider the derivation of (D & A) from the premises (A & B) and
(C & D):

assert (A & B), (C & D)

> let {_ := conclude D
(!right-and (C & D));
:= conclude A
(!left-and (A & B))}
(!'both D A)

Theorem: (and D A)

Alternatively:

assert A-and-B := (A & B)
assert C-and-D := (C & D)
> {

conclude D
(!right-and C-and-D);
conclude A
(!left-and A-and-B);
('both D A)
3

Theorem: (and D A)
or:
> (!both conclude D
(!right-and C-and-D)
conclude A
(!left-and A-and-B))
Theorem: (and D A)

or even more tersely:

> (!both (!right-and C-and-D)
(!left-and A-and-B))

Theorem: (and D A)

fpmics 2016/9/20 10:19 Page 196 #220

196 CHAPTER 4. SENTENTIAL LOGIC

4.3 Working with conditionals

4.3.1 Using conditionals: modus ponens and modus tollens

One of the most fundamental inference rules in logic is modus ponens, also known as
conditional elimination. Starting from two premises of the form (p ==> ¢) and p, modus
ponens generates the conclusion g, thereby performing conditional elimination. In Athena,
modus ponens is performed by the binary primitive method mp. When the first argument
to mp is of the form (p ==> ¢), the second argument is p, and both arguments are in the
assumption base, mp will successfully derive g. For instance, assuming that (A ==> B) and
A are both in the assumption base, we have:

> (!mp (A ==> B) A)

Theorem: B

Another important method involving conditionals is modus tollens. Given two premises
of the form (p ==> ¢) and (~ ¢), modus tollens generates the conclusion (~ p). That’s a
valid form of reasoning. Suppose, for instance, that we know the following two sentences
to be true:

1. Ifthe keys are in the apartment, then they are in the kitchen.
2. The keys are not in the kitchen.

From these two pieces of information we can infer that the keys are not in the apartment.'
That is the sort of inference licensed by modus tollens.

In Athena, modus tollens is performed by the binary method mt. When the first argument
to mt is a conditional (p ==> ¢), the second is (~ ¢), and both are in the assumption base,
mt will derive (~ p). For instance, assuming that (A ==> B) and (~ B) are both in the
assumption base, we have:

1 Indeed, suppose that the keys are in the apartment. Then, by the first premise and modus ponens, they would
have to be in the kitchen. But the second premise tells us that, in fact, they are not in the kitchen. We have thus
arrived at two inconsistent conclusions: that the keys are in the kitchen and that they are not. This contradiction
shows that our starting assumption is untenable—the keys cannot be in the apartment. This is an example of
reasoning by contradiction, a topic that is discussed more extensively in Section 4.5.2.

An astute reader might point out that the derivation of a contradiction from our two premises along with the
hypothesis that the keys are in the apartment does not necessarily compel us to retract that hypothesis. All it
shows is that the three sentences together, as a whole, form an inconsistent set, and therefore that at least one
of them must be false. Which one we choose to reject is up to us. That is true. We could restore consistency by
rejecting one of the two premises instead. However, we generally operate under the assumption that we are not
willing to give up the initial premises of an argument—the premises are taken for granted, and if any sentence p
conflicts with them, then it is p that must be given up, not any of the premises. (Of course this is an otiose point
if the starting premises are themselves inconsistent.)

fpmics 2016/9/20 10:19 Page 197 #221

4.3. WORKING WITH CONDITIONALS 197

> (!'mt (A ==> B) (~ B))

Theorem: (not A)

4.3.2 Deriving conditionals: The assume construct

The standard way of proving a conditional (p ==> ¢) is to assume the antecedent p (i.e.,
to add p to the current assumption base) and proceed to derive the consequent g. In Athena
this is done with deductions of the form assume p D, where D is a proof'that derives ¢ from
the augmented assumption base. To illustrate this technique, here is a proof of (A ==> A):

> assume A
(!claim A)

Theorem: (if A A)

Deductions of the form assume p D are called conditional or hypothetical deductions.
We refer to p and D as the hypothesis (or assumption) and the body of the conditional
deduction, respectively. We also say that D represents the scope of the hypothesis p. So, in
the above example, the hypothesis is the atom A, and its scope is the deduction (!claim A),
which constitutes the body of the conditional proof.

To evaluate a deduction of the form

assume p D 4.1)

in an assumption base /5, we add p to f and go on to evaluate the body D in the augmented
assumption base S U {p}. The fact that D is evaluated in f U {p} means that the assumption
p can be freely used anywhere within its scope, that is, anywhere inside D. If and when the
evaluation of D in S U {p} produces a conclusion ¢, we return the conditional (p ==> ¢)
as the result of (4.1). If the evaluation of D in S U {p} diverges or results in an error, then
the evaluation of (4.1) also diverges or results in that same error, respectively.

The body D is said to be a subproof (or subdeduction) of the conditional proof (4.1).
Subproofs can be nested inside one another, as the figure below illustrates. Note that,
strictly speaking, the scope of a hypothesis is not determined by indentation but rather
by the syntax rules that define what counts as a deduction. Nevertheless, proper indenta-
tion can be very helpful in demarcating the scope of an assumption (and, more generally,
in clarifying the structure of a proof). Typically, the body D of a hypothetical deduction
assume p D is written on the line after the hypothesis p and indented two spaces to the
right of the keyword assume.

fpmics 2016/9/20 10:19 Page 198 #222

198 CHAPTER 4. SENTENTIAL LOGIC

assume p

assume g

" This subproof is in the scope
of both q and p

N

Here we are in the scope of p but outside the scope of ¢

For instance, in the following proof the body (!claim A) is in the scope of both the inner
assumption B and the outer assumption A:

> assume A
assume B
(!claim A)

Theorem: (if A
(if B A))

Note that the contents of the assumption base are immaterial for the above proof. Eval-
uating this proof in any whatsoever will successfully produce the result

(A ==> B ==> A).

That is the case for all and only those sentences that are faufologies. A tautology is pre-
cisely a sentence that can be derived from every assumption base. Given that Athena’s
classical logic is monotonic,” an alternative way of saying the same thing is this: A tau-
tology is a sentence that can be derived from the empty assumption base. The equivalence
of the two conditions can be shown as follows. In one direction, if p can be derived from
every assumption base, then it can certainly be derived from the empty assumption base.
Conversely, if p can be derived from the empty assumption base then, by monotonicity, it
can be derived from every assumption base.

2 Monotonicity means that if p is derivable from some f, then it is also derivable from every superset ' 2 f.
Intuitively, the import of this is that adding new information to an assumption base does not invalidate any
conclusions previously obtainable from it.

3 This is a syntactic or proof-theoretic characterization of tautologies. A semantic characterization would say
that a tautology is a sentence that is true under all interpretations, or, alternatively, logically entailed by the empty
assumption base; we will pursue the semantic direction later on, in Section 4.12. Since the proof system of Athena

fpmics 2016/9/20 10:19 Page 199 #223

4.3. WORKING WITH CONDITIONALS 199

Oftentimes it is useful to give a name to the hypothesis of a conditional deduction, and
then use that name inside the body to refer to the hypothesis. This can be done with the
following variant of the assume construct:

assume [:=p

D
which is really a shorthand for:
let {/:=p}
assume /

D

As an example, consider the proof of the tautology (A & B ==> B & A):

> assume hyp := (A & B)
let {left := (!left-and hyp);
right := (!right-and hyp)}

(!'both right left)

Theorem: (if (and A B)
(and B A))

Actually, Athena allows a simpler proof:

> assume (A & B)
(!'both B A)

Theorem: (if (and A B)
(and B A))

This proofis possible because whenever the hypothesis of a conditional proof'is a conjunc-
tion, Athena not only adds that conjunction to the assumption base, but it also adds each
of the conjuncts (and the conjuncts of those conjuncts, etc.). Thus, in the above case, both
A and B are in the assumption base when both is invoked. A similar automatic decomposi-
tion of conjunctions also happens during intermediate proof steps in a let deduction. For

instance:

assert A=>B&C := (A ==> B & C)
assert A

let {B&C := (!mp A=>B&C A);

- # We now have not just (B & C), but also B and C in the a.b.
3

is complete (meaning that a sentence p is entailed by an assumption base f iff it is derivable from f), these two
views of tautologies coincide.

fpmics 2016/9/20 10:19 Page 200 #224

200 CHAPTER 4. SENTENTIAL LOGIC

Consider next this implication:
((A ==>B ==>C) ==> (B ==> A ==> (C)). 4.2)

The following proof derives (4.2):

> assume hyp := (A ==> B ==> ()
assume B
assume A
let {B=>C := (!mp hyp A)}

conclude C
(!mp B=>C B)

Theorem: (if (if A
(if B C))
(if B
(if A C)))

Observe that the structure of the proof closely mirrors the structure of the goal. The
proof is constructed by reasoning as follows: Our top goal, (4.2), is a conditional of the
form (p ==> ¢), hence our proof, starting on the first line, will be of the form assume p D,
where D must be a proof capable of deriving the subgoal ¢. Now, in this case ¢ is also a
conditional, namely, (B ==> A ==> (), so D, starting on line 2, will be a deduction of the
form

assume B D/,

where D’ is a deduction that will derive the subgoal (A ==> C). Since that subgoal is again
a conditional, the proof I’ that starts on line 3 is of the form

assume A D,

where D” now has to derive the subgoal C from the preceding three assumptions. This can
be done by the two inferences on lines 4 and 6, first by deriving (B ==> C) and finally by
deducing C; both steps use modus ponens on the appropriate premises. As we discuss in
Section 4.14, most proofs are constructed through similar combinations of reasoning that
is driven exclusively by the syntactic form of the goal and reasoning that is driven by the
contents of the assumption base.

Of course, a conditional may be derived in many other ways. For instance, if the assump-
tion base contains a conjunction of the form (p & (¢ ==> r)), then it is simpler and more
direct to derive the conditional (¢ ==> r) by performing right conjunction elimination on
that premise instead of using assume. The same goes for sentences of other forms, say, for
biconditionals. The proof techniques discussed in this chapter are the canonical or most
common ways of inferring the corresponding kinds of sentences, but, depending on the
context, it may be simpler to use an alternative method.

fpmics 2016/9/20 10:19 Page 201 #225

4.4. WORKING WITH DISJUNCTIONS 201

4.4 Working with disjunctions

4.4.1 Using disjunctions: Reasoning by cases

Suppose we are trying to derive some goal p. If the assumption base contains a disjunction
(p1 | p2), we can often put that disjunction to use as follows: We know that p; holds or
p2 holds. If we can show that p; implies the goal p and that p, also implies p, then we
can conclude p. For, if p; holds, then p follows from the implication (p; ==> p), p1, and
modus ponens; while, if py holds, then p follows from (p» ==> p), p2, and modus ponens.
This type of reasoning (called “case analysis,” or “reasoning by cases”) is pervasive, both
in mathematics and in real life.*

In Athena this type of reasoning is carried out by the ternary method cases. The first
argument of this method must be a disjunction, say (p; | p2); while the second and third
arguments must be conditionals of the form (p; ==> p) and (py ==> p), respectively. If
all three sentences are in the assumption base, then the conclusion p is produced as the
result. It is an error if the arguments are not of the form just described, or if one of them is
not in the assumption base. For instance:

assert (C1 | C2), (C1 ==> B), (C2 ==> B)

> conclude B
(!cases (C1 | C2)
(C1 ==> B)
(C2 ==> B))

Theorem: B

As another example, suppose the assumption base contains (C ==> B) and
((A & B) | C) and from these two premises we want to derive the conclusion B. We can
do that with the following case analysis:

> (lcases (A & B | C)
assume (A & B)
(!claim B)
assume C
(!mp (C ==> B) C))

Theorem: B

4 For instance, suppose we know that either the transmission of a car is broken or the battery needs to be replaced.
And we also know that the cost of fixing the transmission exceeds $150, while replacing the battery also costs
more than $150. Then we can conclude that in either case, fixing the car will cost more than $150.

fpmics 2016/9/20 10:19 Page 202 #226

202 CHAPTER 4. SENTENTIAL LOGIC

Note how the implications required by cases in its second and third argument positions are
naturally produced as results of assume deductions. And in the first case, (!claim B) suc-
ceeds because, as noted earlier, assume (A & B) adds the conjuncts A and B to the assump-
tion base, along with (A & B).

A useful variant of reasoning by cases performs a case analysis on a sentence p and its
negation (~ p). We know that for any given p, either p or (~ p) holds; this is the law of
the excluded middle. Therefore, if we can show that a goal ¢ follows both from p and from
(~ p), we should be able to conclude ¢. This is done with the binary method two-cases,
which takes two premises of the form (p ==> ¢) and (~ p ==> ¢) and derives g. For
example:

assert (A ==> B), (~ A ==> B)

> (!'two-cases
(A ==> B)
(~ A ==>B))

Theorem: B

The two premises can be passed in either order, for example, the negative conditional can
be the first argument and the positive second:

> (!two-cases
(~ A ==> B)
(A ==> B))

Theorem: B
This is not a primitive Athena method. It is defined in terms of cases as follows:

define two-cases :=
method (cond-1 cond-2)
let {M := method (p q)
(!cases conclude (p | ~ p)
(!ex-middle p)
(p ==> @)
(~p ==>a))}
match [cond-1 cond-21 {
[(p ==>q) ((~ p) ==>q)] => (!M p q)
I T~ p) ==>q) (p ==> @)] => (IM p @)
}

where ex-middle is a unary method that takes an arbitrary sentence p and derives the
theorem (p | ~ p). (We ask you to implement this method in Exercise 4.15.)

fpmics 2016/9/20 10:19 Page 203 #227

4.4. WORKING WITH DISJUNCTIONS 203

4.4.2 Deriving disjunctions

The most straightforward way to derive a disjunction (p | ¢) is to derive the left compo-
nent, p, or the right component ¢. If we have p in the assumption base, then (p | ¢) can
be derived by applying the binary method left-either to p and ¢:

(!left-either p q).
Likewise, if ¢ is the assumption base, then the method call

(!right-either p ¢)
will derive the disjunction (p | ¢). For instance:

> assume A
(!claim A)

Theorem: (if A A)
> (!left-either (A ==> A) B)

Theorem: (or (if A A)
B)

> (!right-either B (A ==> A))

Theorem: (or B
(if A A))

In addition to these two primitive methods, Athena offers a third, more versatile mech-
anism for disjunction introduction, the binary method either. If either p or ¢ is in the
assumption base, then (!either p ¢) derives the disjunction (p | ¢). Otherwise, if nei-
ther argument is in the assumption base, either fails.

In realistic proofs, one is unlikely to derive a disjunction simply by deriving one of
the two disjuncts. Usually there is a relationship between the two that must be taken into
account, and that relationship is lost when each disjunct is treated in isolation from the
other. Consider, for instance, the derivation of (A | ~ A) from the empty assumption base.
Neither A nor (~ A) is derivable by itself, but their disjunction is.

There are a few different avenues for dealing with such cases. One of them is to reason
by contradiction, that is, to negate the entire disjunction and proceed to derive a contra-
diction. In the foregoing example, that would mean assuming (~ (A | ~ A)) and trying to
derive a contradiction from that. (Reasoning by contradiction is discussed in Section 4.5.2.)
Another useful technique is to treat a disjunction (p | ¢) as the conditional

(~p=>q

fpmics 2016/9/20 10:19 Page 204 #228

204 CHAPTER 4. SENTENTIAL LOGIC

and use the corresponding introduction mechanism for conditionals (Section 4.3). The con-
ditional (~ p ==> ¢) is logically equivalent to the disjunction (p | ¢), so if we succeed
in deriving the former, we should be able to derive the latter as a matter of routine. Indeed,
in Section 4.9 we develop a method that can take an arbitrary conditional of the form
(~ p ==> ¢) and produce the corresponding disjunction (method cond-def, page 224).
With that method under our belt, we can transform a disjunction-derivation problem into a
conditional-derivation problem.

4.5 Working with negations

4.5.1 Using negations

The only primitive method for negation elimination is dn, which stands for “double nega-
tion.” It is a unary method, whose argument must be of the form (~ ~ p). If that sentence
is in the assumption base, then the call

(tdn (~ ~ p))
will produce the conclusion p, thereby eliminating the two leading negation signs. For
instance:
> assume h := (~ ~ A)
(tdn h)

Theorem: (if (not (not A))
A)

There are two other primitive methods that require some of its arguments to be negations:
mt and absurd. Therefore, depending on what exactly we are trying to prove, we might be
able to use a negation in the assumption base as an argument to one of these methods.

4.5.2 Deriving negations: Proof by contradiction

Proof by contradiction’ is one of the most useful and common forms of deductive rea-
soning. The basic idea is to establish a negation (~ p) by assuming p and showing that
this assumption (perhaps in tandem with other working assumptions) leads to an absurdity,
namely, to false. That entitles us to reject the hypothesis p and conclude the desired (~ p).

The binary method by-contradiction is one way to perform this type of reasoning
in Athena. The first argument to by-contradiction is simply the sentence we are try-
ing to establish, typically a negation (~ p). The second argument must be the conditional

5 Also known as reductio ad absurdum and indirect proof .

fpmics 2016/9/20 10:19 Page 205 #229

4.5. WORKING WITH NEGATIONS 205

(p ==> false), essentially stating that the hypothesis p leads to an absurdity. If that con-
ditional is in the assumption base, then the desired conclusion (~ p) will be produced.

As an example, suppose that the assumption base contains the premises (A ==> B & C)
and (~ B), and from these two pieces of information we want to derive the negation (~ A).
We can reason by contradiction as follows: Suppose A holds. Then, by the first premise
and modus ponens, we would have (B & C), and hence, by conjunction elimination, B. But
this contradicts the second premise, (~ B), and that contradiction allows us to reject the
hypothesis A, concluding (~ A). In Athena code:

assert premise-1 := (A ==> B & C)
assert premise-2 := (~ B)

> (!by-contradiction (~ A)
assume A
let {p1 := conclude (B & C)
(!mp premise-1 A);
_ := conclude B
(!left-and p1)}
(!absurd B premise-2))

Theorem: (not A)

Of course, we could have derived the conditional (A ==> false) first, and then, in a sepa-
rate step, deduced (~ A) by applying by-contradiction:

> assume A
let {_ := conclude (B & C)
(!mp premise-1 A)}
(!absurd B premise-2)

Theorem: (if A false)

> (!by-contradiction (~ A)
(A ==> false))

Theorem: (not A)

However, we believe that the first version is more readable, so typically the requisite con-
ditional (p ==> false) will be established by a hypothetical deduction of the form

assume p D

that will appear directly as the second argument to by-contradiction. Observe that the
semantics of nested deductions that we discussed in Section 2.10.2 are crucial here. A
proof like

fpmics 2016/9/20 10:19 Page 206 #230

206 CHAPTER 4. SENTENTIAL LOGIC

(!by-contradiction (~ p)
assume p ---)

works precisely because the assume, being a deductive argument to the outer method call,
will have its conditional conclusion incorporated into the assumption base by the time
by-contradiction is applied.

Recall that the most direct way to derive false is to apply the binary method absurd to
two contradictory sentences of the form ¢ and (~ ¢) in the assumption base. For instance,
assuming that A and (~ A) are both in the assumption base, we have:

> (labsurd A (~ A))
Theorem: false
Accordingly, a proof of (~ p) by contradiction often has the following logical structure:

(!by-contradiction (~ p)

assume p
let {p1 := conclude ¢
Dy;
p2 := conclude (~ ¢g)
Dy}

(!'absurd p1 p2))

In many cases, however, one of the two contradictory sentences, g or (~ ¢), is already in
the assumption base, so we do not have to deduce it explicitly. We simply derive the other
element of the contradictory pair and then move directly to the absurd application.

As another example, here is a proof that derives (~ B) from (~ (A ==> B)):

assert premise := (~ (A ==> B))

> (!by-contradiction (~ B)
assume B
let {A==>B := assume A
(!claim B)}
(!absurd A==>B premise))

Theorem: (not B)

Sometimes the sentence p that we want to establish by contradiction is not a negation; it
might be an atom, or a disjunction, or something else. That would seem to present a prob-
lem, since, according to what we have said so far, by-contradiction can only introduce
negations. However, in classical logic every sentence p is equivalent to the double negation
(~ ~ p), so this is not really a limitation: We can simply infer (~ ~ p) by assuming (~ p)
and deriving a contradiction. After that, we can eliminate the double negation sign with

fpmics 2016/9/20 10:19 Page 207 #231

4.5. WORKING WITH NEGATIONS 207

dn. For example, suppose that the assumption base contains A and (~ (A & ~ B)), and we
want to derive the atom B. Following this recipe, we have:

assert premise-1 := (~ (A & ~ B))
assert premise-2 := A
> let {--B := (!by-contradiction (~ ~ B)

assume (~ B)
(!absurd (!both A (~ B)) premise-1))}
(!dn --B)

Theorem: B

However, this routine of inferring a double negation first and then eliminating the two lead-
ing negation signs is somewhat tedious. For that reason, by-contradiction offers a short-
cut: When the conclusion p to be established is not in the explicit form of a negation, it suf-
fices to establish the conditional (~ p ==> false). We can then apply by-contradiction
directly to p and this conditional:

(!'by-contradiction p
(~p ==> false))

and the desired p will be obtained. Thus, for instance, the foregoing proof could be more
concisely written as follows:
> (!by-contradiction B

assume (~ B)
(!absurd (!both A (~ B)) premise-1))

Theorem: B

Let us say that the complement of a negation (~ p) is the sentence p, while the comple-
ment of a sentence p that is not a negation is the sentence (~ p). Thus, for example, the
complement of A is (~ A), while the complement of (~ A) is A. We can define complemen-
tation in Athena with the following procedure:

define (complement p) :=

match p {

(~a) =>q
[—=> (~p)
}

We write B to denote the complement of a sentence p. Note that p = p.
With this notion, we can succinctly specify the behavior of by-contradiction as fol-
lows. If the conditional (p ==> false) is in the assumption base, then

(!'by-contradiction p

fpmics 2016/9/20 10:19 Page 208 #232

208 CHAPTER 4. SENTENTIAL LOGIC

(p ==> false))

will produce the conclusion p; otherwise it will fail.
There are two other auxiliary methods for reasoning by contradiction:

1. The unary method from-false derives any given sentence, provided that the assumption
base contains false. That is, (!from-false p) will produce the theorem p whenever
the assumption base contains false. This captures the principle that “everything follows
from false.”

2. The ternary method from-complements derives any given sentence p provided that the
assumption base contains two complementary sentences ¢ and g. Specifically,

(!from-complements p q q)

will derive p provided that both ¢ and g are in the assumption base. Such an application
can be read as: “Infer p from the complements ¢ and g.”

These two methods are not primitive. Both are defined in terms of by-contradiction,
and indeed each is definable in terms of the other; see Section 4.9 and Exercise 4.10.
Nevertheless, it is convenient to have both available as separate methods.

4.6 Working with biconditionals

4.6.1 Using biconditionals

There are two elimination methods for biconditionals, left-iff and right-iff. For any
given biconditional (p <==> ¢) in the assumption base, the method call

(1left-iff (p <==> q))
will produce the conclusion (p ==> ¢), while
(right-iff (p <==> q))
will yield (¢ ==> p). For instance:
assert bc := (A <==> B)
> (lleft-iff bc)
Theorem: (if A B)
> (lright-iff bc)

Theorem: (if B A)

4.6.2

fpmics 2016/9/20 10:19 Page 209 #233

4.7. FORCING A PROOF 209

Deriving biconditionals

The introduction method for biconditionals is equiv. Given two conditionals (p ==> q)
and (¢ ==> p) in the assumption base, the call

(equiv (p ==> ¢) (¢ ==> p))
will derive the biconditional (p <==> ¢):
assert (A ==> B), (B ==> A)
> (lequiv (A ==> B) (B ==> A))
Theorem: (iff A B)

Note that there is a similarity between the introduction and elimination methods for
conjunctions and those for biconditionals, with left-and and right-and being analogous
to left-iff and right-iff, respectively, and with both analogous to equiv. This similarity
is no accident, as a biconditional (p <==> ¢) is logically equivalent to the conjunction of

the two conditionals (p ==> ¢) and (¢ ==> p). Indeed, if we regard (p <==> ¢) as syntax
sugar for the conjunction ((p ==> ¢) & (¢ ==> p)), the analogy becomes exact.

4.7 Forcing a proof

When we set out to write a proof, we often know the rough outline of the proof’s structure,
but we don’t know ahead of time how to fill in the details. (This is a recurrent theme that
will come to the forefront when we turn to proof heuristics in Section 4.14.) Suppose, for
example, that our goal is some sentence p, and that we have decided to proceed by a case
analysis on a disjunction (p; | p»2). Accordingly, we know that the general form of the
proof will be

(tcases (p1 | p2)
assume pj
conclude p
Dy
assume pp
conclude p
Dy)

although we have not yet figured out what D1 and D, should be. The fact that we don’t
yet have a complete proof should not prevent us from entering into the system the partial
outline that we do have and verifying that it properly derives the goal. Later on we will
make additional progress on D and on D», and we will want to evaluate that progress
as well. In general, proof headway is made incrementally, and we should have a way of

fpmics 2016/9/20 10:19 Page 210 #234

210 CHAPTER 4. SENTENTIAL LOGIC

testing these contributions as they are being made, gradually, instead of having to wait
until we have a finished proof with all the details filled in. Yet Athena can only evaluate
syntactically complete deductions. So it would seem, for example, that the only way to
evaluate the preceding proof outline will be to expand D and D; into complete deductions.
How can we resolve that tension?

The answer lies in the built-in primitive method force. This is a quite special unary
method (hence the distinct coloring) that takes an arbitrary sentence p as its argument and
produces p right back as its result. It is, in a sense, the deductive equivalent of the identity
function, and it is therefore similar to the reiteration method claim. Unlike claim, however,
the force method does not bother to check that the given sentence is in the assumption base.
In fact, force doesn’t perform any checking at all; it simply returns whatever sentence p it
is given as a theorem. It should be clear that this is an unsound and generally dangerous
method that should not be used anywhere in a finished, complete proof. However, it can
be a useful tool during proof development, for the reasons described. For example, using
force we can express the foregoing proof sketch as follows:

(tcases (p1 | p2)
assume pj
conclude p
(! force p)
assume py
conclude p
(!force p))

This a proof that can be evaluated perfectly well on its own and will produce the intended
conclusion p—as long as the cases application is correct. Once we have tested this outer
proof skeleton, we can go about replacing the first force application with another proof
sketch, and so on, until eventually there are no occurrences of force left anywhere in the
proof text, and we have a complete proof that successfully derives p.® Using methods we
could decompose and subdivide the work further in a more structured way, for example:

(lcases (p1 | p2)
assume pj
conclude p

6 Another alternative would be to insert dummy deductions in place of D and D,, provided we remove the
“conclude p” annotations, for example, we might replace both Dy and D, by (!true-intro). This would enable
us to evaluate the overall deduction. Then, as we begin to fill in the details, these bogus (!true-intro) appli-
cations would be removed. However, that approach has two serious drawbacks, apart from requiring the deletion
of the conclude annotations. First, the result of the entire proof would become true, rather than the intended p.
This means that we cannot have this partial proof embedded in a larger context (a surrounding partial proof) in
which it would be expected of it to produce the proper conclusion, p. Second, we cannot patch up the proof in
a truly incremental fashion. For instance, we would be forced to remove both true-intro applications simul-
taneously, because if we remove only the first one, replacing it by a proper deduction Dy that derives p, while
keeping the second true-intro application, the cases application would fail. The use of force averts both of
these complications.

fpmics 2016/9/20 10:19 Page 211 #235

4.8. PUTTING IT ALL TOGETHER 211

(!'handle-case-1 p; p)
assume p)
conclude p
('handle-case-2 py p))

where the case handlers could be defined as independent methods, initially defined simply
as applications of force:

define handle-case-1 :=
method (premise goal)
Assume the premise holds, derive the goal
(! force goal)

define handle-case-2 :=
method (premise goal)
(! force goal)

and the removal of the force applications could now proceed incrementally in these sepa-
rate methods.

4.8 Putting it all together

In this section we will work through a proof that illustrates several of the mechanisms
discussed in this chapter. Suppose we are given the following two premises:

assert premise-1 := (A & B | (A ==> C))
assert premise-2 := (C <==> ~ E)

and our task is to write a proof D that derives the conditional (~ B ==> A ==> ~ E) from
the two premises.

Since our goal is a conditional, we will derive it with a conditional proof that assumes
the antecedent and derives the consequent, so our top-level deduction D will be of the form:

assume (~ B)
D/

where D' must derive the subgoal (A ==> ~ E) from the hypothesis (~ B) and the two
premises. Now this subgoal is itself a conditional, so D’ will be a conditional proof as well.
Thus, the skeleton of our top-level proof D now takes the following form:

assume (~ B)
assume A

fpmics 2016/9/20 10:19 Page 212 #236

212 CHAPTER 4. SENTENTIAL LOGIC

D//

where D" needs to derive the subgoal (~ E) from the two previous hypotheses, A and
(~ B), along with the given premises.

We can now proceed in two ways. Continuing our “backward” or “goal-driven” analysis
(more on that in Section 4.14), we could look at the form of the current subgoal and use the
corresponding introduction mechanism for it. The current subgoal is a negation, (~ E), so
we would use proof by contradiction to derive it, and D" would take the following form:

(!by-contradiction (~ E)
assume E
D///)

where D" would have to derive false.

The second way to proceed is to examine the information that is available to D” and see
whether we can derive the desired conclusion (~ E) in a more direct manner. Let us pursue
this second alternative here. D” has access to four sentences: the two starting premises and
the two hypotheses (~ B) and A. How can we use these to derive (~ E)? Well, the first
premise is a disjunction,

(A&B | (A==>0)),

and we saw that the chief way to use a disjunction (p | ¢) in order to infer a goal r is to
perform a case analysis: Show that the goal » is implied both by p and by ¢. So in this case
we would have to show that (~ E) follows both from the first disjunct (A & B) and from
the second one, (A ==> C). Accordingly, D" takes the following form:

(!cases premise-1
assume (A & B)
conclude (~ E)
Dy
assume (A ==> C)
conclude (~ E)
Dy)

where now D1 has to derive (~ E) from the four available sentences along with (A & B);
while Dj has to derive (~ E) from the four sentences along with (A ==> C). These deduc-
tions are now fairly easy to construct. Let us start with D;. The hypothesis (A & B) gives us
B, since assume (A & B) places A and B in the assumption base. But we are currently oper-
ating within the scope of the hypothesis (~ B), so this contradiction allows us to conclude
the desired (~ E) by a straightforward use of from-complements. D1 thus becomes:

(! from-complements (~ E) B (~ B))

fpmics 2016/9/20 10:19 Page 213 #237

4.9. A LIBRARY OF USEFUL METHODS FOR SENTENTIAL REASONING 213

Continuing with D;: By the second premise, C is equivalent to (~ E), so we can detach
the conditional (C ==> ~ E) via left-iff. But the innermost hypothesis (A ==> C) along
with the preceding hypothesis A gives us C, so (~ E) can now be obtained simply by mp:

let {C1 := conclude (C ==> ~ E);
(!left-iff premise-2);
C2 := conclude C

(tmp (A ==>C) A)}
conclude (~ E)
(!'mp C1 C2)

Assembling all the pieces together, and using a little additional naming, we arrive at the
following final version:

assert premise-1
assert premise-2

(A& B | (A ==>0C))
(C <==> ~ E)

assume -B := (~ B)
assume A
conclude -E := (~ E)
(!cases premise-1

assume (A & B)
(! from-complements -E B -B)

assume A=>C := (A ==> ()
let {C=>-E := (!left-iff premise-2);

C (!mp A=>C A)}
(!'mp C=>-E C))

In Section 4.14 we present heuristics for performing this kind of proof-finding analysis
more systematically.

4.9 A library of useful methods for sentential reasoning

The inference mechanisms we have covered so far constitute a complete deduction system
for sentential logic, meaning that if any zero-order sentence p follows logically from a finite
set of zero-order sentences £, then there exists a proof expressed in terms of these mech-
anisms that derives p from f. However, these mechanisms are too low-level, in that the
inference steps we can take with them are very small. Each such mechanism either elim-
inates or else introduces a logical connective. But expressing a realistic proof exclusively
in terms of elimination and introduction steps can be unduly cumbersome. Very often we
would like to take a larger inferential step in one fell swoop. To take but one example, we
might want to apply one of De Morgan’s laws to directly infer

(~p&~¢q 4.3)

