fpmics 2016/9/20 10:19 Page 103 #127

2.17. SUMMARY AND NOTATIONAL CONVENTIONS 103

10. Primitive methods: A primitive method is an explicitly defined method M whose body

is an expression E (rather than a deduction, as is the usual requirement for every non-
primitive method). M can take as many arguments as it needs, and it can produce any
sentence it wants as output—whatever the expression £ produces for given arguments.
Thus, M becomes part of our trusted computing base and we had better make sure that
the results that it produces are justified. Such a method is introduced by the following
syntax:

primitive-method (M [;---1,) := E

where /] - - - I, are the arguments of M. One can think of Athena’s primitive methods
as having been introduced by this mechanism. For example, one can think of modus
ponens as:

primitive-method (mp premise-1 premise-2) :=
match [premise-1 premise-2] {
(L(p ==> q) pl where (hold? [premise-1 premise-21)) => q
3

Normally there is no reason to use primitive-method, unless we need to introduce
infinitely many axioms in one fell swoop, typically as instances of a single axiom
schema. In that case a primitive-method is the right approach. An illustration (indeed,
the only use of this construct in the entire book) is given in Exercise 4.38.

2.17 Summary and notational conventions

Below is a summary of the most important points to take away from this chapter, as well
as the typesetting and notational conventions we have laid down:

Expressions and deductions play fundamentally different roles. Expressions represent
arbitrary computations and can result in values of any type whatsoever, whereas deduc-
tions represent logical derivations and can only result in sentences. We use the letters £
and D to range over the sets of expressions and deductions, respectively.

A phrase is either an expression or a deduction. We use the letter F to range over the set
of phrases.

Expressions and deductions are not just semantically but also syntactically different.
Whether a phrase F is an expression or a deduction is immediately evident, often just by
inspecting the leading keyword of F.

Athena keywords (such as assume) are displayed in bold font and dark blue color.

Athena can be used in batch mode or interactively. In interactive mode, if the input
typed at the prompt is not syntactically balanced (either a single token or else starting

fpmics 2016/9/20 10:19 Page 104 #128

104 CHAPTER 2. INTRODUCTION TO ATHENA

and ending with parentheses or brackets), then it must be terminated either with a double
semicolon ; ; or with EOF.

» The syntax of expressions and deductions is defined by mutual recursion. Expressions
may contain deductions and all deductions contain expressions.

+ All phrases (both expressions and deductions) are evaluated with respect to a given lex-
ical environment p, assumption base S, store ¢, and symbol set y . If a deduction D is
evaluated with respect to an assumption base f and produces a sentence p, then p is a
logical consequence of f. That is the main soundness guarantee provided by Athena.

* Athena identifiers are used to give names to values (and also to sorts and modules). They
are represented by the letter / (possibly with subscripts, superscripts, etc.). Identifiers can
become bound to values either at the top level, with a directive such as define, or inside
a phrase, with a mechanism like let or via pattern matching inside a match phrase, and
SO on.

+ Athena values are divided into a number of types, enumerated below.>® Evaluating any
phrase F' must produce a value of one of these types, unless the evaluation diverges or
results in an error:

1. Terms, such as (father peter) or (+ ?x:Int 1), which are essentially syntax trees
used to represent elements of various sorts. We use the letters s and 7 to represent
terms. Variables are a special kind of terms, of the form ?7: S, where S is a sort. They
act as syntactic placeholders. We use the letters x and y to range over variables.

2. Sentences,suchas (= 1 1), (not false), etc. We use the letters p, ¢, and r to repre-
sent sentences. Evaluating a deduction can only produce a value of this type.

3. Lists of values, such as [1 2 [joe (not true)] ’fool. We use the letter L to range
over lists of values.

4. The unit value ().

5. Function symbols, such as true or +. We use the letters f, g, and 4 to range over
function symbols. Function symbols whose range is Boolean are called relation or
predicate symbols; we use the letters P, O, and R to range over those.

6. Sentential constructors and quantifiers, namely not, and, or, if, iff, forall, and

exists.

7. Procedures, whether they are primitive (such as plus) or user-defined via lambda.>°

8. Methods, whether they are primitive (such as both) or user-defined via method.

35 The division is not a partition, as some values belong to more than one type. For instance, every Boolean term
(such as true) is both a term and a sentence.

36 We often use the word “procedure” to refer both to syntactic objects, namely, expressions of the form

lambda (/1 ---1;) E; and to semantic objects, namely, the denotations of such expressions, which are proper
mathematical functions. Sometimes, when we want to be explicit about the distinction, we speak of a procedure

fpmics 2016/9/20 10:19 Page 105 #129

2.18. EXERCISES 105

9. ASCII characters.
10. Substitutions, which are finite mappings from term variables to terms.

11. Cells and vectors, which can be used to store and to destructively modify arbitrary
values or sequences thereof.

12. Tables and maps, which implement dictionary data types whose keys can be (almost)
arbitrary Athena values, the former as hash tables and the latter as functional trees.

We use the letter V' to range over Athena values.

» Every term ¢ has a certain sort, which may be monomorphic (such as Ide or Boolean)
or polymorphic (such as ’S or (Pair ’S1 ’S2)). Sorts are not the same as types. Types,
enumerated above, are used to classify Athena values, whereas sorts are used to classify
Athena terms, which are just one particular type of value among several others.

2.18 Exercises
Exercise 2.1: Determine whether each of the following phrases is an expression or a
deduction. Assume that A, B, C, and D have been declared as Boolean constants.

1. (!both A B)

2. let {p := (A | B)}
(!both p p)

3. 1700
4. (2 plus 8.75)
5. 'cat
6. let {p := (A & B)}
match p {
(_ & _) => (!left-and p)
3
7. "Hello world!"
8. assume A
assume B

(!claim A)

9. [1 2 3]

value to refer to such a function. But usually the context will make clear whether we are talking about an expres-
sion (syntax) or the abstract function that is the value of such an expression (semantics). Similar remarks apply
to our use of the term “method.”

106

20.

. let {x

fpmics 2016/9/20 10:19 Page 106 #130

CHAPTER 2. INTRODUCTION TO ATHENA

(tail L)

. lambda (x)

(x times x times x)

. lambda (f)

lambda (g)
lambda (x)
(f (g x))

. let {L :=['a 'b 'cl}

(rev L)

2
y 0}
try { (x div y) | (x times y) }

. let {p := A;

q:= (B | C)}
match (p & q) {

(p1 & (p2 | p3)) => 'match
| _ => 'fail

}

. pick-any x

(!reflex x)

. let {g := letrec {fact := lambda (n)

check {
(n less? 2) => 1
| else => (n times fact n minus 1)
33
fact}
(g 5

. pick-witness w for (exists ?x . ?x = ?x)

(!'true-intro)

. check {

(less? x y) => (I!M1)
| else => assume A (!M 2)

}

letrec {M := method (p)
match p {
(~ (~aq)) => (IM (ldn p))
| _ => (!claim p)

33

fpmics 2016/9/20 10:19 Page 107 #131

2.18. EXERCISES 107

assume h := (~ ~ ~ ~ A)
('M h)

21. let {M := method (p)
(!'both p p)}
[M 1]

Explain your answer in each case. o

Exercise 2.2: Determine the type of the value of each of the following expressions.

1. 2

2. true

3. (not false)

4. [5]

5.0

6. 'a

7. +

8. (head [father])

9. ‘A
10. or
11. lambda (x) x
12. |'a := 1|
13. (father joe)
14. (+ ?x:Int 1)
15. "foo"
16. make-vector 10 ()
17. (match-terms 1 ?x)
18. method (p) (!claim (not p))

19. (HashTable.table 10)
If the value is a term, then also state the sort of the term. O

Exercise 2.3: Find a phrase F' such that (!claim F) always succeeds (in every assumption
base). O

Exercise 2.4: Find a deduction D that always fails (in every assumption base). a

fpmics 2016/9/20 10:19 Page 108 #132

108 CHAPTER 2. INTRODUCTION TO ATHENA

Exercise 2.5: ITmplement some of Athena’s primitive procedures for manipulating lists,
specifically: map, foldl, foldr, filter, filter-out, zip, take, drop, for-each, for-some,
from-to, and rd. These are all staples of functional programming, and most of them gen-
eralize naturally to data structures other than lists (e.g., to trees and beyond). They are
specified as follows:

* map takes a unary procedure f and a list of values [V ---V,] and produces the list
L V- (¢ Vol

+ foldl takes a binary procedure £, an identity element e (typically the left identity of £,
i.e., whichever value e is such that (f ¢ V) = V forall V), and a list of values [V - - - V]
and produces the result

(ff (e Vi) Va)--- Vo).

 foldr takes a binary procedure f, an identity element e (typically the right identity of /),
and a list of values [V - - - V},], and produces the result

GV f Vet (f V@)

e filter takes a list L and a unary procedure f that always returns true or false and
produces the sublist of L that contains all and only those elements x of L such that
(f x) = true, listed in the order in which they occur in L (with possible repetitions
included).

e filter-out works like filter except that it only keeps those elements x for which
(f x) = false.

 zip is a binary convolution procedure that maps a pair of lists to a list of pairs. Specif-
ically, given two lists [V7---V,] and [Vi -+ V1 as arguments, zip returns the list
[V V{1 --- Vi V;11, where k is the minimum of » and m.

* take is a binary procedure that takes a list L and an integer numeral # and returns the
list formed by the first # elements of L, assuming that » is nonzero and L has at least
elements. If L has fewer than » elements or # is negative, L is returned unchanged. It is
an error if # is not an integer numeral.

 drop takes a list L and an integer numeral # and returns the list obtained from L by
“dropping” the first n elements. If # is not positive then L is returned unchanged, and if
n is greater than the length of L, the empty list is returned.

» for-each takes a list L and a unary procedure / that always returns true or false; and
returns true if (f x) is true for every element x of L, and false otherwise.

» for-some has the same interface as for-each but returns true if (f x) is true for some
element x of L, and false otherwise.

fpmics 2016/9/20 10:19 Page 109 #133

2.18. EXERCISES 109

» from-to takes two integer numerals a and b and produces the list of all and only those
integers i such that @ < i < b, listed in numeric order. If ¢ > b then the empty list is
returned. This procedure is also known by the infix-friendly name to, used as follows:

> (5 to 10)

List: [5 6 7 8 9 10]

* The rd procedure takes a list L and produces the list L’ obtained from L by removing all
duplicate element occurrences from it, while preserving element order. a

Exercise 2.6: Define a unary procedure flatten that takes a list of lists Ly,...,L, and
returns a list of all elements of Ly,...,L,, in the same order in which they appear in the
given arguments. For instance, (flatten [[1 2] [3 4 5]]) should return [1 2 3 4 5].
O

Exercise 2.7: Athena’s library defines a unary procedure get-conjuncts that takes as
input a conjunction p and outputs a list of all its nonconjunctive conjuncts, in left-to-right
order, where a nonconjunctive conjunct of p is either an immediate subsentence of p that
is not itself a conjunction, or else it is a nonconjunctive conjunct of an immediate subsen-
tence of p that is itself a conjunction. If p is not a conjunction, then the single list [p] is
returned. Thus, for example, if the input p is

((A& B | C) &((MD&~E)&F)

then the result should be [A (B | C) D (~ E) FJ. Use one of the higher-order list proce-
dures of the previous exercises to implement get-conjuncts. Implement a similar proce-
dure get-disjuncts for disjunctions. U

Exercise 2.8: Define a ternary procedure list-replace that takes (i) a nonempty list of
values L = [V ---V,]; (ii) a positive integer i € {1,...,n}; and (iii) a unary procedure f;
and returns the list [V --Vi—1 (f Vi) Vig1---V,]. That is, it returns the list obtained
from the input list L by replacing its i/ element, V;, by (f V;). For instance,

(list-replace [1 5 10] 2 lambda (n) (n times n))

should return [1 25 10]. An error should occur if the index i is not in the proper range. O

