
Athena Basics: a short tutorial

October 27, 2022

1.1 Terms and Sentences

1.1.1 Terms

The main ingredients of proofs are terms and sentences, so this is where we begin. A term is a
syntactic object (essentially a tree, as we will see soon) that represents an element of some sort. The
simplest sorts are domains, which are introduced as follows:
>domain Person

New domain Person introduced .

There are a few built-in sorts, such as Int, Real, and Ide. Some sorts, called datatypes, have a special
inductive structure. The built-in sort Boolean is a very simple example of a datatype. We’ll discuss
datatypes in another tutorial.

Once a sort has been introduced, we can build terms of that sort. The simplest kind of term is a
variable, an identifier starting with a question mark and possibly followed by a sort declaration:
>?x: Person

Term: ?x: Person

>? Foo_Bar : Person

Term: ? Foo_Bar : Person

Variables that are not explicitly decorated with sorts are polymorphic; their sorts are automatically
inferred by the surrounding context:
>?x

Term: ?x: 'T26184

>(= ?x ?y)

Term: (= ?x: 'T26192 ?y: 'T26192)

>(= ?x: Person ?y)

Term: (= ?x: Person ?y: Person)

A sort like 'T26184 is a sort variable that represents an arbitrary sort.
More complex terms are built with function symbols, or symbols for short. A function symbol is

introduced with a signature declaration:
declare father , mother : [Person] -> Person # Two unary function symbols

declare sibling-of : [Person Person] -> Boolean # A binary relation symbol

declare joe , mary: Person # Two constant symbols

A function symbol whose range (co-domain) is Boolean is called a relation or predicate symbol. Every
constant function symbol is a term. Moreover, if f is a symbol with a signature [S1 · · · Sn] -> S and
if ti is a term of sort Si, then (f t1 · · · tn) is a term of sort S. These terms are called applications, since
we are “applying” the symbol f to the terms t1 · · · tn, which are viewed as the arguments supplied to
f . Here is an example of applying sibling-of to joe and mary to make a more complex term:
>(sibling-of joe mary)

Term: (sibling-of joe mary)

1

If the signature of f is [S1 · · · Sn] -> S, we say that f has arity n; this is the number of terms
that f expects as arguments. Symbols of arity zero (like joe and mary) are constants. If f is binary
(n = 2), we can apply it using infix notation. Also, successive applications of unary symbols do
not need intermediate parentheses. Finally, relation symbols typically bind less tightly (have smaller
precedence) than other function symbols.
>(joe sibling-of mary)

Term: (sibling-of joe mary)

>(father mother joe)

Term: (father (mother joe))

>(father joe sibling-of mother ?x)

Term: (sibling-of (father joe)
(mother ?x: Person))

Note that terms are always output in prefix, as s-expressions, even if they were written in infix.
Terms can be viewed as trees. Variables and constants are leaves, whereas a term of the form

(f t1 · · · tn) for n > 0 can be understood as a tree with the symbol f at the root and with the trees
corresponding to t1, . . . , tn as the subtrees of f , from left to right. For example, the term

(sibling-of (father joe) (mother ?x:Person))

can be understood as the following tree:

sibling-of

father

joe

mother

?x:Person

The primitive procedures root and children take a term t and return the root node of t and the
subtrees of that root, respectively:
define t := (father joe sibling-of mother ?x)

>(root t)

Symbol : sibling-of

>(children t)

List: [
(father joe)

(mother ?x)
]

We’ll have more to say about procedures and lists soon.
Some symbols are predefined. These include true and false (constants of sort Boolean), numerals

like 3 and (- 875) (constants of sort Int), floats like 3.14 (constants of sort Real), so-called meta-
identifiers like 'foo (constants of sort Ide), function symbols for numeric operations like +, -, *, and
so on, and also for numeric comparisons (<, >, <=, >=).

2

>(?x + 4)

Term: (+ ?x:Int 4)

>(?a + 2 * 3.14)

Term: (+ ?a:Real
(* 2 3.14))

A binary equality symbol is also built-in; this is a polymorphic function symbol.
>(?x = joe)

Term: (= ?x: Person joe)

Polymorphic function symbols can be introduced by prefixing the signature with one or more sort
variables listed within parentheses and separated by commas:
>declare P: (T) [T T] -> Boolean

New symbol P declared .

>(joe P mary)

Term: (P joe mary)

>(2 P 3)

Term: (P 2 3)

1.1.2 Sentences

Every proof derives a unique sentence. An atomic sentence (or “atom”) is a term of sort Boolean,
while a complex sentence is a negation (formed with the sentential constructor not), or a conjunction
(formed with and), or a disjunction (formed with or), or a conditional or biconditional (formed with
if and iff, respectively). The constructors and, or, if, and iff can be used in infix or prefix style:
>(?x:Int > 3) # an atomic sentence (a term of sort Boolean)

Term: (+ ?x:Int 4)

>(and (joe sibling-of mary) (?x > 4)) # a conjunction , written in prefix style

Sentence : (and (sibling-of joe mary)
(> ?x:Int 4))

>(joe sibling-of mary or ?x > 4) # a disjunction , in infix notation

Sentence : (or (sibling-of joe mary)
(> ?x:Int 4))

>(if (?x > 4) (?x > 3)) # a conditional , in prefix notation

Sentence : (if (> ?x:Int 4)
(> ?x:Int 3))

>(?x > 0 iff (- ?x) < 0) # a biconditional , in infix notation

3

Sentence : (iff (> ?x:Int 0)
(< (- ?x:Int)

0))

Also, the tilde˜ can be used interchangeably with not, & with and, | with or, ==> with if, and <==>
with iff:
>(2 > 3 & ~ joe = mary)

Sentence : (and (> 2 3)
(not (= joe mary)))

>(?x < ?y | ?x = ?y | ?x > ?y)

Sentence : (or (< ?x:Real ?y:Real)
(or (= ?x:Real ?y:Real)

(> ?x:Real ?y:Real)))

>(?x < ?y <==> ?y > ?x)

Sentence : (iff (< ?x:Real ?y:Real)
(> ?y:Real ?x:Real))

The predefined procedure =/= can be used a short-hand to build negated equalities:
>(joe =/= mary ==> mary =/= joe)

Sentence : (if (not (= joe mary))
(not (= mary joe)))

The sentences we have seen so far are called zero-order sentences, or propositional-logic sentences.
First-order logic involves the use of the universal and existential quantifiers, which in Athena are
named forall and exists:
>(forall ?x ?y (iff (sibling-of ?x ?y)

(sibling-of ?y ?x)))

Sentence : (forall ?x: Person
(forall ?y: Person

(iff (sibling-of ?x: Person ?y: Person)
(sibling-of ?y: Person ?x: Person))))

>(forall ?x (exists ?y (< ?x ?y)))

Sentence : (forall ?x:Real
(exists ?y:Real

(< ?x:Real ?y:Real)))

Quantified sentences can be written in more conventional notation as follows:
>(forall ?x ?y . ?x sibling-of ?y <==> ?y sibling-of ?x)

Sentence : (forall ?x: Person
(forall ?y: Person

(iff (sibling-of ?x: Person ?y: Person)
(sibling-of ?y: Person ?x: Person))))

To avoid having to type too many question marks, we can simply define some names to denote
variables:
define [x y z] := [?x ?y ?z]

4

We can then write:
>(forall x y . x sibling-of y <==> y sibling-of x)

Sentence : (forall ?x: Person
(forall ?y: Person

(iff (sibling-of ?x: Person ?y: Person)
(sibling-of ?y: Person ?x: Person))))

>(forall x . exists y . x < y)

Sentence : (forall ?x:Real
(exists ?y:Real

(< ?x:Real ?y:Real)))

>(forall x y z . x = y & y = z ==> x = z)

Sentence : (forall ?x: 'T10987
(forall ?y: 'T10987

(forall ?z: 'T10987
(if (and (= ?x: 'T10987 ?y: 'T10987)

(= ?y: 'T10987 ?z: 'T10987))
(= ?x: 'T10987 ?z: 'T10987)))))

1.2 Computing with Athena
Athena can be used as a general-purpose programming language. Procedures can be written to
perform arbitrary computation with terms, which are the fundamental data type of the language, but
also with values of other types, such as lists, functional dictionaries and hash tables. Procedures can
be recursive, they can perform conditional branching, pattern matching on terms, sentences, lists, and
values of other types, and so on. Generally speaking, a procedure f that takes n arguments is applied
in prefix style: (f e1 · · · en), where each ei is an arbitrary Athena phrase. However, just as was the
case with function symbols, binary procedures can be used in infix style, and successive applications
of unary procedures need not be separated by parentheses. The associativity and precedence level
of any procedure can be set by the user. The rest of this tutorial gives a whirlwind tour of some
of Athena’s computation facilities. There’s quite a bit more that cannot be covered here, such as
backtracking (via try), loops (while), cells, substitutions, dictionaries, and more; refer to XX for
more details.

1.2.1 Input and Output

Output can be written to stdout using the predefined procedure print, which takes an arbitrary
number of arguments (of arbitrary types), prints them out, and returns the unit value:1

>(print "\ nHello world !\n")

Hello world!

Unit: ()

A string can be written to a text file with the procedure write-file, whose first argument is a

1The unit value, (), is a unique expression and value in Athena that is typically returned as the result of evaluating
expressions with side effects, such as cell assignments, while loops, and I/O operations.

5

file path (represented as a string) and whose second argument is the string to be written, while the
unary procedure read-file returns a string representing the contents of a text file:
>(write-file "foo.txt" "Foo bar")

Unit: ()

>(print (read-file "foo.txt"))
Foo bar
Unit: ()

Note that write-file writes in the given file in append mode. If you’d like to clobber the file’s
existing contents (if any) before writing to it, you can write your own procedure for it as follows:
>define (overwrite file str) :=

let {_ := (delete-file file)}
(write-file file str)

Procedure overwrite defined .

We’ll talk more about user-defined procedures soon. Finally, the nullary procedure read receives as
input from the user a single character at a time:
>(read) # Press the letter 'a'

Character : `a

1.2.2 Lists

Lists are a fundamental data type in Athena. A list is written simply by enclosing its elements inside
square brackets, separated by white space:
define L := [1 2 3 4 5]

List L defined .

Primitive procedures for manipulating lists include length (self-explanatory); head (gives the first
element of a list); tail (gives the tail of a list); rev (returns the reverse of the input list); join,
which takes an arbitrary number of lists as arguments and concatenates them; and add, which takes
an element h and a list t and returns the list obtained by adding h to the front of t:
>(length L)

Term: 5

>(head L)

Term: 1

>(tail L)

List: [2 3 4 5]

>(rev L)

List: [5 4 3 2 1]

>(join ['a 'b] L ['c 'd])

6

List: ['a 'b 1 2 3 4 5 'c 'd]

>(add 1 (add 2 []))

List: [1 2]

We can work with lists using pattern matching:
>match L {

(list-of h t) => (print "First element : " h "and the tail: " t "\n")
}

First element : 1 and the tail: [2 3 4 5]

Unit: ()

Here’s how we might write our own list reversal procedure using pattern matching:
define reverse :=

lambda (lst)
match lst {

[] => []
| (list-of h t) => (join (reverse t) [h])
}

>(reverse [1 2 3])

List: [3 2 1]

Instead of using lambda, procedures can be defined in more conventional notation as follows:
define (reverse lst) :=

match lst {
[] => []

| (list-of h t) => (join (reverse t) [h])
}

While this implementation works, its runtime complexity is quadratic in the size of the input list.
We can attain linear-time performance by using an internal helper procedure, defined with letrec,
since it is recursive:
define (reverse lst) :=

letrec {loop := lambda (lst accum)
match lst {

[] => accum
| (list-of h t) => (loop t (add h accum))
}}

(loop lst [])

>(reverse [1 2 3])

List: [3 2 1]

Athena strings are just lists of characters, so any procedure that operates on lists can be just as well
applied to strings:
>(tail "foo bar")

List: [`o `o `\blank `b `a `r]

>(println (rev "foo bar"))

7

rab oof

Unit: ()

1.2.3 Computing with Terms and Sentences

A number of primitive procedures for computing with terms are built-in, such as numeric computation
primitives: plus, minus, times, div, mod, less?, leq?, greater?, geq?, and so on. (As we saw, the
identifiers +, -, *, /, and % are used as function symbols, not as procedures for numeric computation.)
>define (factorial n) :=

check {
(n less? 2) => 1

| else => (n times (factorial (n minus 1)))
}

Procedure factorial defined .

>(factorial 5)

Term: 120

We can use let expressions to name results of intermediate computations:
>let {p := (true & false);

q := (false & true)}
(p <==> q)

Sentence : (iff (and true false)
(and false true))

1.2.4 Pattern Matching on Terms and Sentences

We can perform pattern matching on terms and sentences along the following lines:
define (verbalize t) :=

match t {
(father t') => (join "the father of " (verbalize t'))

| (mother t') => (join "the mother of " (verbalize t'))
| (t1 sibling-of t2) => (join (verbalize t1) " is a sibling of " (verbalize t2))
| _ => (val- > string t) # handle all remaining cases
}

define t := (father joe sibling-of mother mary)

>(print "\n" (verbalize t) "\n")

the father of joe is a sibling of the mother of mary

Unit: ()

We can likewise use pattern matching on sentences. For instance, the following procedure carries out
one step of the core transformation that is needed to convert a sentence to CNF (conjunctive normal
form):
define (cnf-once p) :=

match p {
(~ (~ q)) => q

8

| (~ (p1 & p2)) => (~ p1 | ~ p2)
| (~ (p1 | p2)) => (~ p1 & ~ p2)
| (~ (p1 | p2)) => (~ p1 & ~ p2)
| (~ true) => false
| (~ false) => true
| (p1 | (p2 & p3)) => ((p1 | p2) & (p1 | p3))
| ((p1 & p2) | p3) => ((p1 | p3) & (p2 | p3))
| _ => p
}

>(cnf-once ~ (true | false))

Sentence : (and (not true)
(not false))

Quantified sentences can also be matched.
Pattern matching can be used at the top level to define multiple values simultaneously, and inside

let expressions as well:
>define [a b] := [1 2]

Term b defined .

Term a defined .

>let {[a b] := [1 2]} (a plus b)

Term: 3

Athena has a very rich pattern language and these examples barely scratch the surface; refer to XX
for more details and examples.

1.2.5 Precedence, Associativity, Input Expansion and Output Transformation

Every unary and binary function symbol has a certain precedence, which can be obtained by applying
the procedure get-precedence to the symbol. Binary symbols also have a certain associativity, which
can be left or right:
>(get-precedence +)

Term: 200

>(println (get-assoc *))

default (right)

Unit: ()

When we introduce a function symbol, we can optionally include some additional information at
the end of the declaration, inside square brackets:
declare f: [Int Int] -> Int [130 left-assoc]

The above says that f has a precedence of 130 and is left-associative. We can also (optionally) specify
input expanders inside the square brackets. This is a list of n unary procedures g1 · · · gn, themselves
enclosed within square brackets, where n is the arity of the symbol being declared. Then every time
the symbol is applied to n values v1 · · · vn, each vi will first be run through gi. For example:
define (word- > numeral n) :=

9

match n {
"one" => 1 | "two" => 2 | "three" => 3 | "four" => 4 | _ => n

}

declare h: [Int Boolean] -> Int [120 [word- > numeral id]]

>(h "three" false)

Term: (h 3 false)

In Athena, id is the (predefined) identity procedure, lambda (x) x. So here we apply word->numeral
to the first argument of h, while leaving the second argument alone.

Input expansion is a very useful notational device that allows us to change the way we write certain
terms in entirely arbitrary ways. Likewise, we can transform the output produced by a certain user-
defined procedure. For instance, if a procedure outputs natural numbers in Peano notation, we can
make it convert these into conventional numeral notation. Here we simply convert false to 0 and
true to 1:
define (bool- > number b) :=

match b {
false => 0

| true => 1
| _ => b
}

define (even? x) := (x mod 2 equals ? 0)

>(even? 500)

Term: true

>transform-output even? [bool- > number]

OK.

>(even? 500)

Term: 1

Note that equals? is a predefined binary procedure that accepts two values and returns true if the
values are identical and false otherwise.

10

