fpmics 2016/9/20 10:19 Page 849 #873

A

Athena Reference

HIS APPENDIX provides a compact description of the syntax and operational seman-
tics of Athena’s core language constructs.

A.1 Syntax

As explained in Chapter 2, there are two main syntactic categories in Athena: expressions
(E) and deductions (D). A phrase F is either an expression or a deduction:

F:=E| D.

The syntax of expressions is specified in Figure A.l, while that of deductions is shown
in Figure A.2. Figure A.4 depicts the syntax of patterns. In the rest of this section we
describe the syntax of character constants (C), string constants (7'), and the sorts (S) used
for annotations. ASCII characters are generated by the following grammar:

C = ‘printable (e.g., ‘A)
| ‘\code (e.g., “\73)
| ‘\"control-character (e.g., ‘\"C)
| ‘\escape-character (e.g., ‘\n)
escape-character = "INJalb]|n]|r|f|t]v
control-character = Al---lzle|L |1/ || “\blank

where printable is any printable ASCII character other than the backslash \ (i.e., any char-
acter with ASCII code from 32 through 91 or 93 through 127, inclusive); and code is any
sequence of one, two, or three digits: 9, 83, 124, and so on. Since any ASCII character with
code ¢ can be expressed as ‘\c, the other three ways of representing characters are strictly
speaking redundant, but convenient nevertheless. Escape characters have standard mean-
ings; for example, \n is the newline character, \t is the tab, and so forth. An Athena string
T is simply a list of characters. String constants can be directly input between quotes:

T = O (e.g., "\nHello world!")

where C here is just as described by the foregoing grammar for characters, except that the
opening quote mark ¢ is omitted.! Thus, control characters and escape characters can be
directly embedded inside string constants. As a notational convention, for any nontermi-
nal X, we write X* for a sequence of zero or more strings generated by X, and X" for a
sequence of one or more such strings.

Finally, the following grammar gives the syntax of sorts:

1 If included, it will count as a separate character.

850

fpmics

2016/9/20 10:19 Page 850 #874

APPENDIX A. ATHENA REFERENCE

:: 1 Identifiers

| & Characters

| T String constants

| O Unit

| ?:S Term variables (annotated)
| 2/ Term variables (unannotated)
| 'l Meta-identifiers

| check {Fy => E| | --- | F,, = E,} Conditional expressions

| lambda (/*) E Procedures

| (E F*) Applications

| [F*] Lists

| method (/*) D Methods

| let {my := F1; ---;my := Fp} E Let expressions

| letrec { := Ey; ---; 1, := E;} E Recursive let expressions

| match F {m; => E; | --- | @p, => E,} Match expressions

| try {E1 | -+ | En} Try expressions

| cell F Cells

| set! £ F Assignments

| ref £ References

| while F E Loops

| make-vector E F Vector creation

| vector-sub £| E» Vector access

| vector-set! E| E; F Vector assignment

| (seq F*) Sequences

| (&& F*) Short-circuit boolean “and”
| nrrF Short-circuit boolean “or”

Figure A.1
Syntax of Athena expressions

S = "I (Sort variables, e.g., 'S5)
| 1 (Constant sort constructors, e.g., Boolean or Int)
| ad Si---Sp) (Compound sorts, e.g., (List Int))

Note that the patterns that may appear in a clause of a by-induction or datatype-cases
proof are of a restricted form; their syntax is described by the following simple grammar:

=1 |1:S| d=at) | dasn)

where S ranges over sorts.

fpmics 2016/9/20 10:19 Page 851 #875

A.2. VALUES 851

D = (apply-method E Fj---Fy) Method calls

| (E Fy---Fp) Method calls (usual syntax)

| conclude F D Conclusion-annotated deductions
| assume F D Hypothetical deductions

| assume / := F D Named hypothetical deductions
| suppose-absurd F D Proofs by contradiction

| generalize-over E D Universal generalizations

| pick-any I D Universal generalizations

| pick-any I:S D Universal generalizations

| with-witness E F D Existential instantiations

| pick-witness / for F D Existential instantiations

| pick-witnesses I} I --- I, for D Existential instantiations

| by-induction F {7y => Dy | --- | @y => Dy} Structural induction

| datatype-cases F {z] => Dy | --- | @y => Dy} Structural case analysis

| check {F} => Dy | --- | Fy => Dy} check deductions

| match F {my => Dy | --- | @y => Dy} match deductions

| let {m := F1; ---; @y := Fy} D let deductions

| letrec {I} := Ey; ---; 1, := Ep} D letrec deductions

|

try {Dy | --- | Dy} try deductions

Figure A.2
Syntax of Athena deductions

A.2 Values

Figure A.3 shows the types of values that Athena phrases denote. Some brief remarks on
each type follow.

1.

The unit value, denoted by the expression (), is a single special object, distinct from all
other values. It is used primarily as the result of expressions with side effects.
Function symbols were discussed in Section 2.2; they are datatype or structure con-
structors, or else symbols introduced via declare. This means that symbols such as
false and N.+ are actual values, possible results of computations.

Terms and sentences are as explained in Chapter 2.

The sentential connectives are the five operators used to build compound sentences:
not, and, or, if, and iff. In this group of values we also have the quantifiers forall
and exists. These are values, so they too can be the results of computations.

A list of values is just that: a finite list [V1,..., V},], n > 0, possibly empty.2

2 We use commas to separate the elements of such lists in order to emphasize that these are not the same as
Athena lists. The latter are syntactic objects (expressions), whereas value lists are abstract objects: finite sequences
of values.

fpmics 2016/9/20 10:19 Page 852 #876

852 APPENDIX A. ATHENA REFERENCE

6. A function value is the mathematical object denoted by an Athena procedure. Specifi-
cally, a function value is a computable ternary function that takes as arguments (1) a list
of values [V1,..., V], m > 0; (2) an assumption base £; and (3) a store ¢ ; and returns
an ordered pair (V,0’) consisting of a value V' and a store ¢’, or else halts in error or
diverges. Function values are thus higher-order: some of the V; inputs might themselves
be function values, and the output returned by applying a function value may itself be
a function value.

7. A method value is the deductive analogue of a function value; it is the mathematical
object denoted by an Athena method. Specifically, a method value is a computable
ternary function that takes as arguments (1) a list of values [V7,..., Vj,], m > 0; (2) an
assumption base f; and (3) a store o ; and returns an ordered pair (p, ') consisting of
a sentence p and a store ¢’ (or else generates an error or diverges). Note that a method
value may take other method values as inputs, but it may not produce them as results.
(Function values, by contrast, may produce method values as results.)

8. Characters are individual ASCII symbols.

9. A substitution is a computable function from term variables to terms that is the identity
almost everywhere; substitutions were discussed in Section 2.14.8.

10. Tables and maps are type-tagged finite functions from values to values. So while a
table and a map might abstractly represent the same underlying function from values to
values, they are guaranteed to be distinct entities.

11. Finally we have cells and vectors, which act as storage containers that can hold arbitrary
values (possibly other cells and/or vectors). For mathematical purposes, a cell may be
associated with a unique natural number /, and we may then think of the computer’s
memory as an infinite list: cell 0, cell 1, cell 2, cell 3, and so on. All of these cells are
initially unassigned. Vector values are modeled as lists of cells.

These families of values are not quite pairwise disjoint; there is some overlap between
(a) terms and function symbols, and (b) terms and sentences. First, a constant symbol such
as zero or peter counts both as a symbol and as a term. And second, a term of sort Boolean
counts both as a term and as a sentence. In each of these two cases, a value of one type
may be coerced into the other type, as required by the context. It is fine, for instance, to
pass a term 7 of sort Boolean to a procedure that expects a sentence; 7 will just be treated as
a sentence. Athena performs such conversions automatically.

Finally, a word about value equality. Any two values of the same type may be compared
for equality (e.g., with the primitive binary procedure equal?). Equality for sentences is
alpha-equivalence. For terms it is syntactic identity modulo sort renaming. A cell is only
identical to itself. If you think about cells as locations indexed by natural numbers, that
makes sense: locations i and j are the same iff i = j. Accordingly, different cells may have
identical contents. Similar remarks apply to vectors. Two substitutions are equal iff they

fpmics 2016/9/20 10:19 Page 853 #877

A.3. OPERATIONAL SEMANTICS 853

The unit value Function symbols Sentential connectives and quantifiers

Terms Sentences Lists of values
Substitutions Function values Method values
Cells Vectors Characters
Tables Maps

Figure A.3
Types of Athena values

have identical supports, and assign the same term to each variable in their supports. Equal-
ity is not decidable for function and method values, and an error will occur if one attempts
to apply equal? to such values. Equality for characters is obvious: two characters are the
same iff they have the same code. Two lists of values [V1,...,V,] and [V7,...,V}] are
identical iff » = m and V; is equal to V] fori = 1,...,n. Two tables (or two maps) are iden-
tical iff they have the exact same domain and range; that is, they map the same keys to the
same values. The unit value is only identical to itself. Finally, identity on function sym-
bols, sentential connectives, and quantifiers is clear: A symbol or a sentential connective
or quantifier is identical only to itself. Values of different types are considered distinct by
default, unless one of the values can be converted to the type of the other and the two can
then be determined to be identical on the basis of the above conventions.

A.3 Operational semantics

In this section we specify in detail the result of evaluating any phrase F in a given envi-
ronment p, assumption base S, store ¢, and symbol set y. We clarify these parameters
below:

1. An environment p is a computable function that maps any given identifier / either to a
value V or to a special unbound token.

2. An assumption base f is a finite set of sentences.

3. A store ¢ is a computable function that maps any natural number (representing a mem-
ory location) to a value (the location’s contents) or to a special unassigned token.
Infinitely many numbers must be unassigned in any given store.

4. A symbol set y is a collection of function symbols and their respective signatures,’
along with a collection of sort constructors and their arities; y also includes information

3 See page 24 for a discussion of signatures.

fpmics 2016/9/20 10:19 Page 854 #878

854 APPENDIX A. ATHENA REFERENCE

on whether a given sort constructor is a datatype or structure, and if so, which function
symbols are its constructors.

The result of evaluating a phrase F' with respect to given p, £, o, and y, is one of three
things:

1. a pair (V,0’) consisting of a value V and a store ¢’, where V is the output of the
evaluation and ¢’ reflects any side effects accumulated during the evaluation; or

2. a pair consisting of an error message and a store ¢’, indicating the occurrence of an
error during the computation (a store ¢’ is still necessary to reflect side effects accrued
prior to the error); or

3. nontermination.

The specification of the evaluation process below is given in English, but without ambigu-
ity. It can serve as the basis for implementing a core Athena interpreter.

Since the evaluation of most expressions leaves the store unaffected, if we do not explic-
itly specify what the new store is then it should be assumed that it is the same as that in
which the phrase was evaluated, so that 6’ = ¢. Also, unless we explicitly say otherwise,
we will generally assume that the evaluation of a phrase F' is immediately halted if the
evaluation of a subphrase of F' produces an error message and a store ¢”; in such cases the
result of evaluating F becomes that same error message and ¢”’.

The evaluation algorithm proceeds by a case analysis of the syntactic structure of the
given phrase. We begin with expressions, but first a piece of notation. Consider any function
ffromaset4toaset B. Whenay,...,a, are distinct elements of 4 and b; € B,i = 1,...,n,
we write fTa; = b1,...,a, — b,] for that function from 4 to B which maps a; to b; and
every other x € 4 to f(x).

* Identifiers: If the given expression is an identifier /, and if / is bound in the given
environment p to some value V, then the output value is V; it is an error if 7 is unbound
inp?

 Unit: The value of the expression () is always the unit value.

* Term variables, meta-identifiers, and characters are always self-evaluating, regardless
ofp,f,o,and y.

+ String constants: A string constant results in a list of the characters that constitute the
string, in the given order.

* check expressions: To evaluate an expression of the form

4 Note that when a function symbol f is first introduced, the name f is automatically bound to that function
symbol. The name f can later perhaps be redefined (bound to another value), but the underlying function symbol
will continue to exist in the relevant symbol set (and can always be retrieved, for example, by the string->symbol
procedure). Numerals (such as 5 or 3.14) can be understood as always being bound to the corresponding numeric
terms.

fpmics 2016/9/20 10:19 Page 855 #879

A.3. OPERATIONAL SEMANTICS 855

check {F| => E| | --- | F, = E,}

in p, f, 0, and y, we first evaluate F| in p, S8, o, and y, possibly resulting in a value
V1 and store ¢1.°> If V| is the constant term true, then the result of the entire check
expression is the result obtained by evaluating £ in p, £, o1, and y . Otherwise, if V7 is
false, the process continues with the second clause, taking into account any side effects
that the evaluation of /| might have engendered: The phrase F is evaluated in p, f, o1,
and y, possibly resulting in a value V; and a store g3. If V5 is true, then the final result
is that of evaluating E» in p, f, 02, and y . Otherwise, if V7, is false, F73 is evaluated in
p, P, 02, and y; its value is compared to true, and so forth. Clearly, evaluation might
diverge if some F; or E; diverges. It is an error if there are no alternatives (i.e., if » = 0),
in which case we return an appropriate error message and the store ¢ as the result of the
evaluation; or if no alternative succeeds (i.e., no F; ever produces true), in which case
we return an error message and the store o,; or if some F; results in a value other than
true or false, in which case we return an error message and the store o;. If F), is the
keyword else and no F; produced true, j < n, then the final result is that of evaluating
E,inp, S, 0,-1,and y.(’

* Procedures: The value of lambda (/;---1,) E in p, S8, 6, and y is a function value
that takes a list of # values V1, . .., V, along with an assumption base A’ and a store ¢’ as
arguments, and produces the result of evaluating the body E in p[I1 — Vi,..., I, > V],
', 6’, and y . Note that the lexical environment and symbol set are statically determined,
whereas the store and the assumption base are dynamic. The evaluation of procedures
always terminates successfully.

* Methods: The value of method (I;---1;) D in p, 5, o, and y is a method value that
takes a list of 7 values V1,. .., V, along with an assumption base 8’ and store ¢’ as argu-
ments, and produces the result of evaluating the deduction D in p[l1 — V1,...,I, >
Val, B, 6’, and y . Here too, the lexical environment and symbol set are statically deter-
mined while the store and the assumption base are dynamic. The evaluation of methods
always terminates successfully.

» Applications: The value of an expression of the form
(E Fi---Fp)

in p, B, 0,and y is obtained as follows. First, £ is evaluated in p, 8, ¢, and y, possibly
resulting in a value V' and store o’. We then proceed with a case analysis of V:

1. If V is a function value ¢, we evaluate the arguments F1, . .., F), sequentially, starting
with F in p, B, ¢/, and y, to obtain values V1,.. ., V, and a store o,,. This sequential

5 Inaccordance with the convention made above, if the evaluation of | in p, 8, o, and y generates an error and
some store o, we simply return that as the result of the entire check expression.

6 The keyword else may only appear in the position of F,.

fpmics 2016/9/20 10:19 Page 856 #880

856 APPENDIX A. ATHENA REFERENCE

evaluation threads the store from the evaluation of F; to that of Fjy. Specifically,
first we evaluate F'| in p, 8, o/, and y to obtain a value V'] and a store o;; then we
evaluate F in p, f5, 01, and y to obtain a value V> and store g2; we continue in this
fashion until we evaluate F, in p, S8, 0 ,—1, and y, resulting in a value V7, and store
oy. The final result is that of applying ¢ to the list [V, ..., V], B, and ;.

2. If V is a function symbol f of arity n, we sequentially evaluate F,. .., Fy, starting
with 1 in p, 8, ¢ and y, to obtain values V1,...,V, and a store o,. If each V; is
a term ¢, then the resulting value is the term (f #1 - -1,), provided that this term is
well sorted. If it is not, we return an error message and the store g, as the result. (We
also return an error message and the store o, if some V; is not a term.)

3. If V is a sentential connective o, we evaluate F1, ..., Fj, sequentially to obtain values
V1,...,V, and a store g,,. If each V; is a sentence p;, then the resulting value is the
sentence (o pi---py), provided that the latter is well sorted, and the resulting store
is o,,. If the sentence is not well sorted or if some V; is not a sentence, we return an
error message and the store a,.

4. If V is a quantifier O, we check to make sure that » > 1; if not, we return an error

message and the store o’. We then evaluate F,...,F, sequentially to obtain val-
ues Vq,...,V, and a store o,. The first » — 1 values must all be term variables
X1,...,Xs—1, while the last value V;, must be a sentence p. If not, we halt with an

error message and o,,; otherwise the resulting value is the quantified sentence:

©Qx1 (Qx2 -+ (Qxnp))

provided that it is well sorted, while the resulting store is o,. If the above is not a
well-sorted sentence, we return an error message and the store o]

5. If V is a substitution 8, we check whether » = 1. If not, we return an error message
along with the store ¢’ and halt. Otherwise we evaluate F} in p, S, ', and y to obtain
a value V] and a store o1. Then:

« If V] is aterm #; (or sentence py), the output is the term 8 (¢1) (or sentence 9 (p1),
respectively) and o1, provided that #(#) (respectively, 8 (p1)) is well sorted; if it
is not, we return an error message and o1 8

o If V1isalist [Vy---V,] where each V; is a term or sentence, then the output is the
list [0(V1),...,0(V,)] and the store a1, provided that each 8 (V;) is well sorted. If
one is not, of if 1 is not such a list, we return an error message and the store o7.

7 Note that applications such as (forall x . p) are syntax sugar for (forall x p). The latter is the more
fundamental syntactic construct.

8 We write 0 (¢) (respectively, O (p)) for the term obtained by applying the substitution @ to the term 7 (respectively,
sentence p).

fpmics 2016/9/20 10:19 Page 857 #3881

A.3. OPERATIONAL SEMANTICS 857

« If V1 is neither a term nor a list of terms, we halt with an error message and the
store o.

6. If VVis amap, we check whether n = 1. If not, like before, we return an error message
along with the store ¢’ and halt. Otherwise we evaluate F; in p, 8, ¢’, and y to obtain
a value V| and a store g1. Then, if V] is a key in the map V, the output is the value
that the map prescribes for that key, along with ¢. If V] is not a key in that map, we
return an error message and 1.

7. If V is neither a function value, nor a function symbol, sentential connective, quanti-
fier, substitution, or map, then we halt with an error message and ¢”.

match expressions: To evaluate match F {7y => E| | --- | m, => E,}in p, 5, 0, and
y, we first evaluate the discriminant F in p, f, o, and y, possibly obtaining a value
V and store o’. We then go through the patterns 71, ..., 7, sequentially, trying to find
a pattern that is matched by V in p and y (using the algorithm of Section A.4). If no
such pattern is found, we halt with an error message and ¢’. Otherwise, let 7; be the
first matching pattern and let {/; — V71,...,Ix = Vi} and 7 be the finite set of bindings
and sort valuation, respectively, returned by the matching algorithm. The output then
becomes the result of evaluating E; in p[l1 — V1,..., Ly = Vi], B, ¢/, and y. If that
result is a term or sentence, then 7 is applied to it before returning.

let expressions: For semantic purposes, an expression of the form
let {7y := F1; ---; @, := F,} E 1)

is treated as syntax sugar. The desugaring proceeds by induction on n. When n = 0, (1)
reduces to £. When n > 0, (1) is desugared into match F| {z; => E’}, where E’ is the
result of desugaring

let {ny := Fp; ---; m, := F,} E.

letrec expressions: The result of evaluating
letrec {I} := E{; ---; 1, := E;} E

in p, B, 0,and y is that of evaluating the following expression in p, f, 5, and y :

let {/1 := (cell ()); ---; 1, := (cell ());
:= (set! [E/l);

:= (set! I, E)}

fpmics 2016/9/20 10:19 Page 858 #882

858 APPENDIX A. ATHENA REFERENCE

where each Ej/ is obtained from Ej; by replacing every free occurrence of Ijg by (ref I,
j=1,...,n;and E’ is likewise obtained from E. This desugaring is the classic way to “tie
the knot,” and it is often used to implement recursion when the implementation language
supports state. The various E; are usually lambda or method expressions.

try expressions: The try construct implements backtracking: To evaluate
try {Er | -+ | En}

inp, fB,0,and y, we first evaluate E in p, 8, 6, and y . If that results in a value V] and
store o1, we return V1 and o1. But if it results in an error message and a store o1, we go
on to evaluate E3 in p, 8, 61, and y ; and so forth. If the evaluation of every E; fails, we
return an error message and oy,.

Cells: To evaluate an expression of the form cell Fin p, f5, o, and y, we first evaluate
Fin p, B, 0, and y to obtain some value ¥ and store ¢’. We then let / be the smallest
natural number such that ¢’ (/) is unassigned, and we return as output the cell represented
by the location / along with the store ¢'[/ > V].

References: To evaluate an expression of the form ref E in p, f8, 0, and y, we evaluate
E in p, B, o, and y, possibly obtaining a value ¥ and store ¢’. If the value V is not a
memory location (cell), we return an error message and ¢’. If it is a memory location /,
we return the value ¢’ (/) and the store ¢’.!°

Assignments: To evaluate an expression of the form set! E Fin p, f, 0, and y, we
first evaluate E in p, f, 0, and y, possibly obtaining a value V| and store g;. If V] is
not a memory location (cell), we halt with an error message and o as the result. If it is
a cell /, we proceed to evaluate F' in p, S5, 01, and y, possibly obtaining a value V> and
store 03. We then return the unit value and the store o3[/ — 73].

while loops: To evaluate an expression of the form while F E in p, 8,0, and y:

1. We evaluate F' in p, 5, o, and y, possibly obtaining a value V'; and store o7.

2. If V1 is the constant term false, we return the unit value and store o1. Otherwise, if
V1 is true, we evaluate £ in p, /5, 01, and y to obtain some value V, and store g3. We
then continue with the first step, only now F'is evaluated in p, S, 02, and y (rather
than p, B, o, and y). If V7 is neither true nor false, we return an error message and
o1.

Short-circuit boolean operations: Expressions of the && and || form (&& Fj---F})
and (|| F---Fy,) are evaluated as explained in Section 2.16, making sure to thread the
store in the obvious manner (the store resulting from the evaluation of 7 in p, f, ¢, and

9 We have not given a precise definition of when an identifier occurs free inside a phrase, but an intuitive under-
standing will suffice for present purposes.

10 Itis an error if cell / is unassigned, although this could never happen in our semantics.

fpmics 2016/9/20 10:19 Page 859 #883

A.3. OPERATIONAL SEMANTICS 859

y becomes the store in which the evaluation of F takes place, if F; is evaluated at all;
and so on).

Vector creation: To evaluate an expression make-vector £ F in p, f5, 0, and y, we
start by evaluating £ in p, 8, o, and y to obtain a value V1 and a store ¢;. If V7 is not a
nonnegative integer constant, we halt with an error message and o1. If it is a nonnegative
integer constant #, we proceed to evaluate F in p, f3, o1, and y, possibly obtaining a
value V> and store 0. We then let /1, . . ., [, be the smallest #» natural numbers such that
o2(l;) is unassigned for each i = 1,...,n, and we return as output the list of memory
locations [/ - - - [,] along with the store o2[/] — Va,..., 0, — V3]

Vector access: To evaluate an expression vector-sub E; E; in p, 5, o, and y, we first
evaluate £1 in p, S, o, and y, obtaining a value V1 and store o1. If V7 is not a list
of memory locations previously created by make-vector,!! we output an error message
and o1. If V7 is a list of memory locations [/; - - - /,] previously created by make-vector,
n > 0, we proceed to evaluate £3 in p, 3, o1, and y, obtaining a value V3 and store o3.
If V, is not a nonnegative integer constant, we halt with an error message and o3. If it is
a nonnegative integer constant i, we return the value o2 (/;+1) and g7, provided that the
index i is between 0 and » — 1 (if it is not, we halt with an error message and 77).

Vector assignment: To evaluate an expression vector-set! E| E; F in p, 5, 0, and
y, we first evaluate £ in p, f, 0, and y, obtaining from it some value V7 and store o7.
If V1 is not a list of memory locations previously created by make-vector, we output an
error message and o1. If V] is a list of memory locations [/; - - - /,,] previously created by
make-vector, n > 0, we proceed to evaluate £ in p, j, o1, and y, obtaining a value />
and store g;. If V> is not a nonnegative integer constant between 0 and » — 1, we halt
with an error message and g,. Otherwise, if it is a some such constant i, we proceed to
evaluate F in p, 5, 02, and y, obtaining from it some value V3 and store 3. We then
return the unit value along with the store o3[/;+1 — V3].

We continue with the evaluation of deductions, which again proceeds by a case analysis

of syntactic structure:

Method calls: To evaluate a deduction (!E F;---F,) in p, 5,0, and y , we first evaluate
Ein p, B, 0,and y, obtaining a value ¥ and store ¢’ from it. If ¥ is not a method value,
we halt with an error message and ¢’. Otherwise, if V' is a method value M, we go on to
evaluate the arguments F, . . ., F, in that turn. Letting 69 = ¢’ and ' = @, we evaluate
each F;in p, B, 0i—1, and y, obtaining from it a value V; and store ¢;. In addition, if the
argument F; is a deduction whose value V; is a conclusion (sentence) p;, we add p; to A.
When all arguments have been evaluated, we apply M to the list of values [V, ..., V],

11 Strictly speaking this requires that we tag lists of cells created by make-vector to distinguish them from lists
of cells that may have been created by other means, but this need not detain us here.

fpmics 2016/9/20 10:19 Page 860 #3884

860 APPENDIX A. ATHENA REFERENCE

B U, and o,. Note that the assumption base in which M is applied will include the
conclusion of every argument phrase F; that is a deduction.

* Conclusion-annotated deductions: To evaluate a deduction conclude F' D in p, 8, o,
and y, we first evaluate F' in p, f8, o, and 7, to obtain a value ¥ and a store ¢’. If V' is
not a sentence, we halt with an error message and ¢’. Otherwise, if V is a sentence p, we
proceed to evaluate the body D in p, 8, ¢/, and y, obtaining from it a conclusion ¢ and
store ¢”. If p and ¢ are alpha-equivalent, we halt with p and ¢” as the output; otherwise
we halt with an appropriate error message and ¢”.

» Hypothetical deductions: To evaluate assume F' D in p, 5, o, and y, we first evaluate
Fin p, B, 0, and y, producing a value V and store ¢’. If V' is not a sentence, we halt
with an error message and ¢’. Otherwise, if V' is a sentence p, we proceed to evaluate
the body D in p, B U {p}, ¢/, and y, obtaining from it some sentence ¢ and store ¢”. We
then return the conditional (p ==> ¢) and ¢” as the result.

* Named Hypothetical deductions: A deduction assume / := F' D is treated as syntax
sugar for the following:

let {/ := F}
assume /
D

* Proof by contradiction: To evaluate suppose-absurd F' D in p, 8, 6, and y, we begin
by evaluating F in p, 8, ¢, and y , producing a value ¥ and store ¢”. If V is not a sentence,
we halt with an error message and ¢’. If V is a sentence p, we evaluate the body D in p,
B U{p}, ¢/, and y, obtaining from it some sentence ¢ and store ¢”. If g is the constant
false, we return (~ p) and ¢” as the result; if ¢ is not false, we output an error message
andg”.

+ Universal generalizations: To evaluate a deduction generalize-over E D in p, j, o,
and y, we first evaluate E in p, 8, o, and y, obtaining some value ¥ and store ¢’. If V is
a variable x (say, ?p:Person), we first check to see that x does not occur free in S. 2 1f it
does, we halt with an error message and ¢’. If x does not occur free in 8, we proceed to
evaluate the body D in p, B, ¢/, and y, obtaining a conclusion p and store ¢”. We then
return the sentence (forall x p) and ¢”, provided that (forall x p) is well sorted (if
it is not, we output an error message and ¢”).

* pick-any universal generalizations: A deduction of the form pick-any I D is treated
as syntax sugar for:

let {/ := (fresh-var)}

12 A variable ?/:S is said to occur free in an assumption base £ iff there is some p € § such that p contains a
free occurrence of some variable of the form ?/:5’, where S is an instance of §'. Thus, if # = {(P ?z:’S3)}, then
?z:Person is considered to occur free in /3, as Person is an instance of ’S3.

fpmics 2016/9/20 10:19 Page 861 #885

A.3. OPERATIONAL SEMANTICS 861

generalize-over [
D

And a deduction of the form pick-any 7:S D is treated as syntax sugar for

let {/ := (fresh-var "S")}
generalize-over [/
D

with-witness deductions: To evaluate with-witness £ F D in p, f8, 0, and y, we
first evaluate E in p, 8, o, and y, to obtain a value V" and store ¢’. If V is not an Athena
variable, or if it is a variable that occurs free in /£, we halt with an error message and
o’. Otherwise, if V is a variable w that does not occur free in 8, we proceed to evalu-
ate F in p, 8, 6, and y, obtaining a value V'’ and store ¢”. If ¥’ is not an existential
quantification, we halt with an error message and ¢”. Otherwise ¥’ must be an existen-
tial quantification p = (exists y . ¢). If the phrase F is a deduction, let ' = g U {p};
otherwise let ' = 8. Now, let ¢’ be the sentence obtained from the body ¢ by replacing
every free occurrence of y by the variable w, provided that the result is well sorted (if not,
we halt with an error message and ¢”). We then evaluate the deduction D in p, ' U {¢'},
o”,and y, obtaining some sentence » and store & . If the variable w occurs free in », we
halt with an error message and &, otherwise we return » and 7.

pick-witness deductions: A deduction pick-witness / for F' D is treated as syntax
sugar for

let {/ := (fresh-var)}
with-witness I F D

A deduction pick-witness / for F' I D is treated as syntax sugar for

let {/} := (fresh-var);
equant := F}
match equant {
(exists (some-var v) body) =>
let {I := (replace-var v I} body)}
with-witness /i equant D

}

(Recall that (replace-var v t p) produces the sentence obtained from p by replacing
every free occurrence of variable v with the term 7, provided that the result is well sorted.)
check deductions: A deduction check {Fy => Dy | --- | F, => D,} is evaluated by
the same algorithm used for check expressions, save for the obvious difference that,

fpmics 2016/9/20 10:19 Page 862 #886

862 APPENDIX A. ATHENA REFERENCE

barring error or divergence, the output value will always be a sentence produced by
some D;.

* match deductions: To evaluate match ¥ {z; => D{ | --- | m, => D,}inp, f,0,and
y , we first evaluate the discriminant F in p, 8, ¢, and y , obtaining a value ¥ and store o’
If the discriminant is a deduction, then ¥ must be a sentence p, and we let f’ = B U {p}.
If, by contrast, F is an expression rather than a deduction, we let 8’ = . We then go
through the patterns 71, . . ., 7, sequentially, trying to find a pattern that is matched by
in p and y . If no such pattern is found, we halt with an error message and ¢’. Otherwise,
let z; be the first matching pattern and let {/; = V1,..., Iy > Vi} and 7 be the set of
bindings and sort valuation returned by the matching algorithm, respectively. The output
then becomes the result of applying 7 to the conclusion obtained by evaluating D; in
plli = Vi,.... Iy Vil, B/, 6, and y. Note that if the discriminant is a deduction,
then its conclusion is available as a lemma inside D;.

let deductions: A deduction of the form
let {my := Fy; -, @y := Fu} D 2)

is treated as syntax sugar, with the desugaring proceeding by induction on n. When
n =0, (2) reduces to D. When n > 0, (2) is desugared into match F| {z; => D'}, where

D' is the result of desugaring let {7 := F»; ---; &, := F,} D.
* letrec deductions: A deduction of the form letrec {{; := Ey; ---; 1, := E,} D is
desugared into the following:
let {) :=

:= (cell ());

I, := (cell ());
= (set! I} E});

_ := (set! I, ED}
D/

where each £’ is obtained from E; by replacing every free occurrence of /; by (ref I),
j=1,...,n;and D' is likewise obtained from D.

try deductions: To evaluate try {D; | --- | Dy} in p, 8, ¢, and y, we first evaluate D
in p, f, 6, and y . If that results in a sentence p and store 1, we return p and g as the
result. But if it results in an error message and a store o1, we go on to evaluate D; in p,
/3, 01, and y ; and so forth. If the evaluation of every D; fails, we return an error message
and o,,.

e Structural induction: To evaluate a deduction of the form

by-induction F {my => Dy | --- | @, => Dy} (3)

fpmics 2016/9/20 10:19 Page 863 #887

A.3. OPERATIONAL SEMANTICS 863

in p, B, o, and y, we start by evaluating F in p, f, o, and y, obtaining a value V" and
store 1. If V' is not a universally quantified sentence of the form

(forall I:Sp p) 4)

for some inductively generated sort Sp in y,'> we halt with an error message and o7.
Otherwise, we check to make sure that the patterns 71, .. ., 7, are proper patterns for Sp
(in accordance with y) and that they are jointly exhaustive.'* We will now explain in
detail what it means for the patterns to be “proper” for Sp in the context of y . Recall that
a pattern «; here is not an arbitrary Athena pattern (as can appear, e.g., inside a match
clause), but is instead an element of a more restricted class of patterns described by the
following grammar:

mu=1|1:5S| dzat) | (as x) (®)]

where S ranges over sorts. An identifier / inside such a pattern is said to be a pattern
variable iff it is not the name of a function symbol in y. It is an error if there are any
duplicate pattern variable occurrences in one of the patterns.

To each given pattern 7 we assign a term #,, defined by structural recursion on the
syntax of 7 as explained below. The algorithm takes as input not only the pattern 7
but also a finite function M mapping pattern variables to terms (mostly term variables),
and it outputs not only the term #; but also an extension of the mapping M. Initially the
algorithm is invoked with M = @. The algorithm is this:

1. If 7 is an identifier /, then if I is the name of a constant symbol ¢ in y, we let z; be ¢
and return M unchanged. Otherwise / must be a pattern variable, and in that case we
let #; be a fresh variable x and we return x and M[/ — x]. Note that the sort of this
fresh Athena variable will be some fresh sort variable (e.g., 'T145).

2. If & is of the form /: S for some sort S in y , we proceed as above except that now, if /
is a pattern variable, the fresh variable x will be of sort S (rather than some fresh sort
variable, as before). Also, if / is not a pattern variable, we need to ensure that /:S is
a well-sorted term.

3. If = is of the form (/ z---mx) for some k > 0, we apply the algorithm recur-
sively to (w1, M), (x2, M1), . . ., (Tk, Mi—1), starting with My = M, obtaining outputs
(tz,, M), ..., (tz;, My). Thus, each output map M; becomes the input map to the next
call. Finally, if I is the name of a constructor of Sp (according to the information in
7), we output (([g, - - - tz,), M), provided that (I 7, - - - t,) is a well-sorted term
(an error is generated if it is not).

13 By an inductively generated sort we mean a sort (S Sy ---Sg), k > 0, whose outer sort constructor S is the
name of a datatype or structure. Thus, e.g., both N and (List 'T35) are datatype sorts.

14 Joint exhaustiveness means that every canonical term of sort Sp matches some such pattern. There is an
algorithm for deciding that condition, though we need not describe it here.

fpmics 2016/9/20 10:19 Page 864 #3888

864 APPENDIX A. ATHENA REFERENCE

4. Finally, if = is of the form (I as 7), we apply the algorithm recursively to (x, M)
to obtain an output (¢, M) and we then return (z;, Mi[I — t]).

A pattern z; in (3),i € {1,...,n}, is considered proper for Sp in the context of y provided
that the term 7, obtained by applying the above algorithm to (z;,9) is a legal term of
sort Sp.

Note that the final sort checking of a term #;; might refine the sorts of the fresh
variables that appear in the mapping M produced by the algorithm. Suppose, for
example, that the pattern is (:: head tail). Here :: is a function symbol (a con-
structor of the datatype List), while head and tail are pattern variables. Since both
head and tail are unannotated, they will be mapped to fresh variables of com-
pletely unconstrained sorts, say to ?v10: 'T145 and ?v11: 'T147, respectively. Later, sort
inference will refine these sorts by realizing that 'T147 must be (List 'T145). We
assume that the sorts of the various fresh variables that appear in the map returned
by the algorithm have been properly updated in this fashion to reflect constraints
inferred by sort checking. In this case, for instance, the map M might assign the
fresh variables ?v10:'T145 and ?v11:(List 'T145) to head and tail, respectively:
M=1{.., head — ?v10:'T145, tail > ?vi1:(List 'T145), ...}.

Once we have gone through each pattern z; and computed the corresponding term
tr; and mapping M; and ensured that each x; is proper for Sp in the context of y, we
proceed to do the following for each clause #; => D;, i =1,...,n. First, we compute all
the appropriate inductive hypotheses for the clause. Specifically, for each fresh variable
x in the range of M; whose sort is an instance of the datatype sort Sp, we generate
an inductive hypothesis, obtained from the body p by replacing every free occurrence
of 1:Sp by x. Let f; consist of f augmented with all the inductive hypotheses thus
generated, and let p; be the environment p augmented with the bindings of M;. We then
evaluate D; in p;, f;, 0j, and y, producing some conclusion p; and store o ;41 (this new
store will become the one in which the deduction of the next clause will be evaluated).
We must now check that p; is of the right form; if it is not, we will halt with an error
message and ;1. We say that p; is of the right form if it is alpha-equivalent to the
sentence we obtain from p by replacing every free occurrence of /:Sp by #,. If p; is
indeed of the right form, we continue with the next clause. If this process is successfully
carried out for every clause, we return as output the universal generalization (4) along
with the store o ,,41.

The generation of inductive hypotheses is somewhat more sophisticated than just
described, allowing, in particular, for nested inductive proofs. We give a brief illustrat-
ing example. Suppose we have a datatype describing the abstract syntax of A-calculus
expressions as follows:

fpmics 2016/9/20 10:19 Page 865 #889

A.3. OPERATIONAL SEMANTICS 865

datatype Exp :=

(var Ide) # variables
| (abs Ide Exp) # abstractions
| (app Exp (List Exp)) # applications

The interesting point for our purposes here is that the reflexive constructor App takes a /is¢
of expressions as its second argument. Should we ever need to perform an induction on
the structure of that list in the midst of performing an outer structural induction on Exp,
appropriate inductive hypotheses should be generated not only for the tail of that list, but
also for the head of the list on the basis of the outer induction. Suppose, for example,
that we have some unary procedure exp-property that takes an arbitrary expression e
and builds some sentence expressing a proposition about ¢, and we are interested in
proving (forall e . exp-property e) (where e is a variable ranging over Exp). We
proceed by structural induction:

by-induction (forall e . exp-property e) {
(var x) => Dj

| (abs x e) => Dy

| (app proc args) => D3

3

Consider now D3, the proof in the third clause. It is not uncommon in such cases to
proceed by induction on the structure of the list args, that is, to show that for all such
lists L, we have (exp-property (app proc L)). Our goal will then follow simply by
specializing L with args:
by-induction (forall e . exp-property e) {
(var x) => Dj

| (abs x e) => D
| (app proc args) =>

let {list-property := lambda (L)
(exp-property (app proc L));
lemma := by-induction (forall L (list-property L)) {
nil => D3
| (:: head:Exp tail:(List Exp)) => D4
¥
3

(!luspec lemma args)

}

Here, inside D4 we will not only get an appropriate inductive hypothesis for
tail (namely, (list-property tail)),15 but we will also get one for head, namely
(exp-property head). Athena knows that it is appropriate to generate this outer induc-
tive hypothesis for head because it is keeping track of the nesting of the various structural

15 Strictly speaking, of course, when we say “tail” we are referring to the fresh term variable to which tail
will be bound.

fpmics 2016/9/20 10:19 Page 866 #890

866 APPENDIX A. ATHENA REFERENCE

inductions and their respective goals, as well as the sorts of the corresponding univer-
sally quantified variables, and realizes that, in the given context, head will in fact be a
“smaller” expression than the outer (app proc args), since head will essentially be a
proper part of args, which is itself a proper part of (app proc args). 16 Inductive proofs
can be nested to an arbitrarily deep level (not just lexically, i.e., as determined by the
nesting of the proofs in the actual text, but dynamically as well, via method calls), and
for every clause of every such proof, appropriate inductive hypotheses will be generated
for every enclosing inductive proof.

* Structural case analysis: A deduction of the form
datatype-cases F {m1 => D; | --- | @, => Dy} (6)

is evaluated (in some p, f3, o, and y) exactly like a structural induction deduction of the
form (3), except that no inductive hypotheses are generated for the various cases.

There is a variant of the datatype-cases construct that is occasionally convenient,
namely:

datatype-cases F on E {ny => Dy | --- | @, => D,}

Here, the evaluation of F'in p, 8, 0, and y must produce a sentence p, along with a store
o1. Further, the evaluation of £ in p, 8, o1, and y must produce a variable x: S, where S is
a datatype, and where p possibly contains free occurrences of x: S. The idea now is that we
want to derive p, and we will proceed by a constructor case analysis on x:S. That is, because
we know that x:S is of sort S, and because we know that every value of S is obtainable by
some constructor application, we essentially reason that x: S must be of the form of one of
the listed patterns, 71, . .., 7,. Assuming that these patterns jointly exhaust S (a condition
that is checked after F and E are evaluated), we must then show that each deduction D;
derives the desired goal p but with every free occurrence of x:S replaced by the term #,,
where #;; is obtained from z; exactly as described above for by-induction proofs. There

16 Note, however, that the generation of outer induction hypotheses depends crucially on the form of the
inner goal. While in a case such as shown here it would indeed be valid to generate an outer inductive
hypothesis for head, that might not be so if list-property were defined differently. Athena will generate
an outer inductive hypothesis only if it can ensure that it is appropriate to do so by conservatively matching
the current (inner) goal to the outer goal. Specifically, an outer inductive hypothesis will be generated only
if it can be shown that the current goal is an instance of the outer goal via some substitution of the form
{x; > #,...,xn > ty} such that (a) each x; is a variable in the outer inductive pattern and (b) each #; is the
current inductive pattern. In this example, the current goal (inside Dy4) is (list-property (:: head tail)),
that is, (exp-property (app proc (:: head tail))). The prior goal (in the current stack of inductive clauses)
is (exp-property (app proc args)). Thus, the current goal matches the prior goal under the substitution
{args > (:: head tail)}, where args is a variable in the outer inductive pattern and (:: head tail) is the
current (inner) inductive pattern. Since head is a variable in the current inductive pattern of the same sort as the
universally generalized variable in the outer clause, and since the substitution conditions (a) and (b) are satis-
fied, an outer inductive hypothesis will be generated in this case. We do not define here the notion of one sentence
matching another sentence under some substitution, but see page 97 for a related discussion (alternatively, consult
the definition of the procedure match-props in 1ib/basic/util.ath).

fpmics 2016/9/20 10:19 Page 867 #3891

A.4. PATTERN MATCHING

867

T = 1
I:S
2I:S
'l
C
T

O

(bind I @)
(val-of I)
(list-of 7 w»3)
(split my my)

[my--7nl
(z where E)

(some-var J)
(some-sent-con J)
(some-quant J)
(some-term J)
(some-atom J)
(some-sentence J)
(some-list J)
(some-cell J)
(some-vector J)
(some-proc J)
(some-method J)
(some-symbol J)
(some-table J)
(some-map J)
(some-sub J)
(some-char J)

|
|
|
|
|
|
|
|
|
|
|
|
| (@y-mn)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

J = I|_

Figure A.4
Syntax of Athena patterns

(Pattern variables, symbols, connectives, quantifers)
(Sort-annotated pattern variables or constant symbols)
(Athena variables)

(Meta-identifiers)

(Character constants)

(String constants)

(Unit pattern)

(Wildcard pattern)

(Named patterns, same as (/ as 7))

(val-of patterns)

(list-of patterns)

(split patterns)

(Fixed-length list patterns)

(Compound patterns)

(Where patterns)

are no inductive hypotheses in this case, but each D; is evaluated in f augmented with
the identity (x:S = #z;). If the evaluation of each D; in the corresponding environment
(obtained from p and 7; as in a by-induction proof), the aforementioned assumption base,
the appropriate store, and y, results in the correct sentence (namely, p with every free
occurrence of x: S replaced by #;,), then p is finally produced as a result.

fpmics 2016/9/20 10:19 Page 868 #892

868 APPENDIX A. ATHENA REFERENCE

A.4 Pattern matching

Athena’s pattern language is shown in Figure A 4. These patterns make it easy to take apart
complicated structures. Disregarding parentheses and square brackets, a pattern is made up
of (a) keywords such as list-of and some-quant, and (b) three kinds of identifiers:

1. The sentential connectives and quantifiers: not, and, or, if, iff (or their infix counter-
parts), along with forall and exists.

2. Function symbols, such as nil, true, and so on.

3. All remaining identifiers, which serve as pattern variables.

Function symbols along with sentential connectives and quantifiers are pattern constants,
in that they can only be matched by the corresponding values. Pattern variables, on the
other hand, can be matched by arbitrary values.

Pattern matching works as follows: a value V' is matched against a pattern 7, with respect
to some environment p and symbol set y, and results either in failure (in which case we
say that ¥ did not match the pattern); or in an environment (finite set of bindings) p’ =
{ » V,...,I,— V,} that assigns values to the pattern variables of 7, along with a sort
valuation, that is, a finite function from sort variables to sorts. Suppose, for example, that
V' is the term (S S zero) and 7 is the pattern (S n). Here we have a successful match,
resulting in the environment {n — (S zero)} (and the empty sort valuation).

In what follows we describe in detail an algorithm that takes as input: (a) a value V,
(b) a pattern z, (c) an environment p, and (d) a symbol set y; and outputs either (i) a
failure token, indicating that ¥ does not match z with respect to p and y, or else (ii) an
environment p’ that represents a successful match, along with a sort valuation z’. Both
the output environment p’ and the output sort valuation ¢’ are built up in stages, and it
is convenient to express the algorithm so that it takes p’ and t’ as two additional inputs.
Initially the algorithm is called with p’ = @ and " = .

The sort valuation is needed primarily in order to handle polymorphism. For instance,
we would like to ensure that a term such as

(pair ?x:'S ?y:'T)

is successfully matched against a pattern like (pair left:Ide right:Real). Intuitively,
(pair ?x:'S ?y:'T) represents infinitely many terms, as many as can be obtained by con-
sistently replacing the sort variables 'S and 'T by ground sorts. One of these infinitely
many terms is the term (pair ?x:Ide ?y:Real), obtained by replacing 'S by Ide and 'T by
Real; and that term does indeed match the given pattern, under {left > ?x:Ide,right —
?y:Real}; our pattern-matching algorithm should infer this automatically. Roughly, when
matching a term or sentence against a pattern, our algorithm will first try to unify the sorts

fpmics 2016/9/20 10:19 Page 869 #893

A.4. PATTERN MATCHING 869

of the various components of the term (or sentence) with the sort constraints expressed in
the pattern. If that succeeds, a match may be obtained; otherwise the match will fail. The
incrementally built sort valuation is used primarily for that purpose.

In summary, then, the algorithm takes as input: (a) a value V; (b) a pattern 7 ; (c) an
environment p; (d) a symbol set y ; (e) the auxiliary environment p’ that is to be incremen-
tally built up; and (f) a sort valuation z.'” The empty set @ is given as the value of the last
two arguments when the algorithm is first invoked. The algorithm will either fail or it will
produce a pair (p”, t’) consisting of an environment p” and a sort valuation z’ that extend
p’ and 7, respectively.! 8 The algorithm proceeds by a case analysis of the structure of 7

* Case 1: 7 is the wildcard pattern _. In that case return (p’, 7).

» Case 2: 7 is a term variable of sort S (such as ?x:Boolean). In that case, if V' is a term
variable of sort T such that 7 (S) and 7 (7) are unifiable under a most general unifier 7’,
return (p’, t”’), where t” is the composition of 7 and 7’; otherwise fail.

» Case 3: 7 is a meta-identifier (such as ' foo), or a character (such as ‘A), or a string (such
as "Hello world!"), or the unit value (). Then if V' is the exact same value (' foo, ‘A,
etc.), return (p’, 7); otherwise fail.

» Case 4: 7 is an identifier /, possibly annotated with a sort S. Then if / is a sentential
connective or quantifier, the match succeeds iff V' is the corresponding value and there
is no sort annotation attached to 7, in which case we simply return p’ and ¢ unchanged.
Otherwise we consult y to see whether / is a function symbol.

1. Ifitis, we check to see if there is a sort annotation S:

« Ifthere is, we check whether the value V is a constant term ¢ whose root is /. If it is
not, we fail. If it is, let S; be the sort of #. We then check to see whether 7 (S;) 19°and
7(S) can be unified under some most general unifier t’. If not, we fail, otherwise
we return p’ unchanged along with the composition of " and 7.

17 The arguments p and y are only used for lookups, so these two values could be held fixed throughout. An
inner matching algorithm that would do all the work could then take four arguments only: (a), (b), (), and (f).
But for simplicity we describe a single six-input algorithm here.

18 To be perfectly complete and precise, we would also need to pass two additional inputs to the matching
algorithm: an assumption base and a store. These are needed to evaluate expressions in where patterns. And we
would also need to modify the output of the pattern matching algorithm to include an output store, that which
might be produced as a side effect of evaluating such expressions. However, because these are needed only for
where patterns, we omit them from the overall specification in order to avoid further complicating the description
of the algorithm. The changes that would be needed to arrive at a working implementation are straightforward.
19 For any sort S and sort valuation 7, 7 (S) denotes the sort obtained from S by replacing every occurrence of a

sort variable in S by the unique sort that ¢ assigns to that variable (if a variable is not in the domain of z, then it
is returned unchanged).

fpmics 2016/9/20 10:19 Page 870 #3894

870 APPENDIX A. ATHENA REFERENCE

+ If there is not, we check to see if the value ¥ is that exact same function symbol
(1.2 If it is not, we fail; otherwise we return p’ and 7 unchanged.

2. Ifit is not, that means that / is a pattern variable. We then check to see if p’ already
assigns a value Vy to I:

» Suppose that it does. Then we again check whether there is a sort annotation S:

= If there is not, then we fail if V' and V7 are not identical; otherwise, if the two
values are the same, we return p’ and 7 unchanged.

* [f there is a sort annotation S, we proceed as follows. If either V' or V7 is not
a term value, we fail. Otherwise both J and V; are term values, call them ¢
and 7 respectively, with corresponding sorts S; and Sy. Then if the sorts 7 (S)
and 7 (S;) are not unifiable, we fail. If they are unifiable under some 7', then
let 71 and 7} be the terms obtained from 7 and 7, respectively, by applying the
composition of 7/ and 7 to their sorts.2! If these two terms are identical, then
we return p’ extended with the assignment that maps I to 71, along with the
aforementioned composition. If #; and t/1 are not identical, we fail.

» Suppose that it does not. We again check to see whether there is a sort annota-
tion:

* If not, then we return (a) p” augmented with {{ = V}; and (b) r unchanged.

« If I is annotated with a sort S, then we check to see if the value V is a term
t, with some sort S;. If it is not a term, we fail. Otherwise, we check whether
7(S;) and 7(S) are unifiable under some 7’. If not, we fail. Otherwise, we return
(a) p’ augmented with {/ — 7'}, where ¢ is the term obtained by applying the
composition of 7/ and 7 to #; and (b) the said composition.

e Case 5: & is a list pattern of the form [x] ---7,]. In that case, if V' is a list of values
[Vi---Vy,], we return the result of trying to sequentially match V1,..., V, against the
patterns zy,...,7, in p, y, p/, and 7 (see the paragraph at the end of this section on
how to sequentially match a number of values V1,..., V, against patterns 7y,...,T,).
Otherwise we fail.

Case 6: 7 is a list pattern of the form (list-of 7 7). In that case, if ' is a nonempty
list of values [V --- V], n > 0, we return the result of trying to sequentially match the
values Vy,[V2 - V,] against the patterns 71,72 (again, in p, y, p’, and 7). Otherwise
we fail.

20 Note that a constant term (such as zero or nil) can be coerced into a function symbol and vice versa.

21 To apply a sort valuation to a term means to apply the sort valuation to every sort annotation in that term.

fpmics 2016/9/20 10:19 Page 871 #895

A.4. PATTERN MATCHING 871

Case 7: 7 is a list pattern of the form (split 7 7). In that case, if V' is not a list of
values, we fail. Otherwise, we determine whether V' can be expressed as the concatena-
tion of two lists L and L, such that L; is the smallest prefix of ¥ for which the values
L1, L, sequentially match the patterns 71, 72 under p, y, p’, and 7, producing a result
(p”,7"). If so, we return that result. If no such decomposition of ¥ exists, we fail.

Case 8: 7 is of the form (val-of I). We then check to see if / is bound in p. If it is not,
we fail. If it is bound to some value V”’, we check whether the two values V and V'’ are
identical. If the values do not admit equality testing, or if they do but are not identical,
we fail, else we return p’ and 7 unchanged.

Case 9: 7 is of the form (bind / =), or equivalently, (/ as z’). In that case we match
V against 7’ in p, y, p’, and t. If that fails, we fail. Otherwise, if it produces a result
(p”,7"), wereturn (p”[I = V],7').

Case 10: 7 is of the form (z’ where E). We then match V against z” in p, y, p’, and 7.
If that fails, we fail. Otherwise, if we get a result (p”, /), we evaluate the expression E in
the lexical environment p augmented with the bindings in p”, y, and some appropriate
assumption base and state. If that evaluation results in true, we return (p”, z”), otherwise
we fail.

Case 11: & is of the form (71 72 --wy4+1), for m > 0. As explained in Section 2.11,
patterns of this form are used for decomposing terms and sentences. Accordingly, we
distinguish the following cases:

* (i) Visaterm ¢ of the form (f ¢ ---1,), m > 0. We then distinguish two subcases:
1. If n =2, m is a quantifier pa'['[ern,22 and 75 is a list pattern, then:

% [f¢is term of sort Boolean, so that it can be treated as a sentence p, try to match
it as a sentence against = (in p, y, p’, and 1), using the algorithm given below
(under case (ii)).

* If 7 1is not a term of sort Boolean, fail.
2. Otherwise, we distinguish the following subcases:

* n = 1and 7y is a list pattern. In that case we try to sequentially match the values
f, [t ---t,] against the patterns 71,7, (in p, 7, p’, and 7).

* Otherwise, if n > 1 or 7 is not a list pattern, we try to sequentially match the
values f, #1, .. ., t;, against the patterns 71,72, ..., 741 (in p, y, p’, and 7).

* (ii) V is a sentence p. We then distinguish two subcases, on the basis of the pattern:

22 That is, one of the two pattern constants forall, exists; or a pattern of the form (some-quant J); or else a
pattern of the form (bind / 7), where 7 is a quantifier pattern.

872

fpmics 2016/9/20 10:19 Page 872 #896

APPENDIX A. ATHENA REFERENCE

1. n=2, 7 is a quantifier pattern, and 7 is a list pattern. In that case, we first

express p in the form

(Q x1--xk p) (7
for some quantifier Q, k>0, and a sentence p’ that is nof of the form
(Q y1---ym P"), m > 0. Note that this can always be done, for any sentence p,
although the identity of Q will not be uniquely determined if k£ = 0, that is, if p
is not an actual quantified sentence (a condition that might affect the first of the
steps below). After we express p in the form (7), we do the following, in sequential
order:

* If k=0, then if the quantifier pattern 7 is of the form (some-quant) or
(bind I n’) for some quantifier pattern 7', fail. Otherwise, let p” = p’ and
7’/ = 7, and continue.

* If k > 0 then match Q against the pattern 7 in p, y, p’, and 7, and let (p”, t")
be the output of that match. (If the match fails, we fail.)

* Match the largest possible prefix [x] - --x;1, i < k, against 72 in p, y, p” and 7/,
and let (p”, ") be the result.

* Return the result of matching the sentence (Q x4 ---x; p’) against 73 in p,
y, p”,and t”. (If k = 0 then this sentence will simply be p’.)

. Otherwise we distinguish the following additional subcases, obtained by analyzing

the structure of p:

* If p is an atomic sentence ¢, we match ¢ as a term against = (in p, y, p’, and 7).
* If p is a compound sentence of the form (o p; - - - pg), for some sentential con-
nective o and k > 0, then:
(a) If n=1 and 7, is a list pattern, we sequentially match o, [p; - - - px] against
the patterns 71,72 1in p, v, p/, and .
(b) Otherwise, we sequentially match o,pi,...,px against the patterns
T1,7m2,...,Tpt1 (inp,y, p’,and 7).

* Finally, if p is a quantified sentence of the form (Q x p’), we sequentially
match the values Q, x, p’ against the patterns «1,. .., T+1.

o (iii) If V is neither a term of the form (f ¢, - - - #,,) nor a sentence, we fail.

» Case 12: 7 is a filter pattern, that is, of the form (some---- J). Suppose first that it is
of the form (a) (some-var I) or (b) (some-var _). In that case we check to see whether
V is some term variable. If it is not, we fail. If it is, then, in case (b), we return p’
and 7 unchanged. In case (a), we return p’[I +— V] and 7. When 7 is of the form (a)
(some-atom /) or (b) (some-atom _), we check to see whether V' is an atomic sentence

fpmics 2016/9/20 10:19 Page 873 #897

A.5. SELECTORS 873

(i.e., a term of sort Boolean), and if so, we return (p’[/ = V],7) in case (a) and (p’, 7)
in case (b). Likewise for the remaining filter patterns. For instance, if 7 is of the form
(a) (some-sent-con I) or (b) (some-sent-con _), we check whether V" is one of the five
sentential connectives, and if so, we return (p’[/ = V], 7) in case (a) and (p’, 7) in case

(b).

Finally, to sequentially match a number of values V71, . . ., V, against a number of patterns
T1,...,Tmingiven p,y, p’, and r, we do the following: First, if n # m, we fail. Otherwise,
if n = 0, we return (p’, 7). Finally, if » = m and n > 0, we match V| against 71 in p, y, p/,
and 7, resulting in some output pair (p},71), and then we proceed to sequentially match
(recursively) V2, ..., V, against @a,..., T, in p, 7, p’l, and 7.

A.5 Selectors

A constructor profile (¢ Si---S,) in the definition of a datatype or structure can option-
ally have one or more selectors attached to various argument positions. To introduce a
selector by the name of g for the i argument position of ¢, simply write the profile as:
(¢ Sy--- g:Si ---Sy). For instance, for the natural numbers we could have:

datatype N := zero | (succ pred:N)

This introduces the selector pred as a function from natural numbers to natural numbers
such that (pred succ » = n) for all n:N. It is generally a good idea to introduce selec-
tors.2> When a constructor has arity greater than 1, we can introduce a selector for every
argument position. For instance, in the definition of natural-number lists below, we intro-
duce head as a selector for the first argument position of nat-cons and tail as a selector
for the second argument position:

datatype Nat-List := nat-nil | (nat-cons head:N tail:Nat-List)

Axioms specifying the semantics of selectors are automatically generated and can be
obtained by applying the procedure selector-axioms to the name of the datatype:

> (selector-axioms "Nat-List")

List: [
(forall ?v561:N
(forall ?v562:Nat-List
(= (head (nat-cons ?v561 ?v562))
?2v561)))

(forall ?v561:N

23 And if the datatype is to be used in SMT solving (Section D.2), then every constructor must have a selector
attached to every argument position.

fpmics 2016/9/20 10:19 Page 874 #898

874 APPENDIX A. ATHENA REFERENCE

(forall ?v562:Nat-List
(= (tail (nat-cons ?v561 ?v562))
?7v562)))
]

The behavior of head or tail on nat-nil is unspecified. In general, the behavior of any
selector of a constructor ¢ when applied to a term built by a different constructor ¢’ is
unspecified.

However, it is possible to provide a total specification for selectors by instructing Athena
to treat selectors as functions from the datatype at hand to optional values of the corre-
sponding sorts. This is done by turning on the flag option-valued-selectors, which is off
by default. For instance:

set-flag option-valued-selectors "on

datatype Nat-List-2 := nat-nil-2 | (nat-cons-2 head-2:N tail-2:Nat-List-2);;
> (selector-axioms "Nat-List-2")

List: [
(forall ?v617:N
(forall ?v618:Nat-List-2
(= (head-2 (nat-cons-2 ?v617 ?v618))
(SOME ?v617))))

(forall ?v617:N
(forall ?v618:Nat-List-2
(= (tail-2 (nat-cons-2 ?v617 ?v618))
(SOME ?v618))))

(= (head-2 nat-nil-2)
NONE)

(= (tail-2 nat-nil-2)
NONE)
]

A.6 Prefix syntax

In this book we have used mostly infix syntax, both for issuing directives (such as declare
and define) and for writing phrases. However, Athena also supports a fully prefix syntax
based on s-expressions. An advantage of s-expressions is that they lend themselves excep-
tionally well to indentation, which can serve to clarify the structure of complex syntactic
constructions. (That is why Athena always displays output in fully indented prefix.) Below

fpmics 2016/9/20 10:19 Page 875 #899

A.6. PREFIX SYNTAX

875

we present s-expression variants of all major syntax forms (shown on the left side in the
infix form in which they have been used in this book):

declare /: [S1---Sy]1 > S

(declare I (=> (S1---Sp) &)

declare /: (I1,....Ix) [S1---Sp1 > S

(declare I ((I1---1x) > (S1---Sp))

declare Ii,...,Iy: (1’,”.,1,’() [S]---Spl -> S

(declare (Iy---Ip) ((I}---Ip) => (Sp-+Sp) S))

assert Ey,...,E,

(assert Ey---Ey)

assert [:= E

(assert [:= E)

set-flag / "on"/"off"

(set-flag I "on"/"off")

overload /1

(overload 11)

set-precedence / E

(set-precedence / E)

set-precedence (/1---1,) E

(set-precedence (/1---1;) E)

lambda (/;---1) E

(lambda (/1 ---1I) E)

method (/;---1;) D

(method (/y---1;) D)

cell F (cell F)
set! E F (set! EF F)
ref E (ref E)
while F E (while F E)

make-vector E F

(make-vector E F)

vector-sub £ E>

(vector-sub E| Ej)

vector-set! E| Ey F

(vector-set! E| Ey F)

check {F| => E{ | --- | Fyy => Ep} (check (Fy E1) --- (Fn En))
match F {zy => E{ | --- | @y => Ey} (match F (71 Ey) --- (an En))
let {z := F1; --;@p := Fu} E (et ((z1 F1) -+ (@n Fu)) E)
letrec {/; := Ey; 31y = E} E (letrec (I} E1) -+ Un En)) E)
try {E; | - | Ep} (try Ey -+ Ep)

check {F{ => Dy | --- | Fn => Dy} (dcheck (F{ Dy) --- (Fn D»))
match F {zy => Dy | --- | @y => Dy} (dmatch F (zy Dy) --- (mn Dp))
let {my := F1; ---; @y := Fp} D (dlet ((z1 F1) -+ (mn Fn)) D)
letrec {/; := Ey; ---;1y := Ep} D (dletrec ((/; Ey) -+ Un Ep)) D)

try {Dy | --- | Dy}

(dtry Dy --- Dy)

fpmics 2016/9/20 10:19 Page 876 #900

876 APPENDIX A. ATHENA REFERENCE

