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Automated Theorem Proving

In the preface we pointed out that for pedagogical reasons the proofs in this book would
not use external automated theorem provers (ATPs) as inference black boxes. We did dis-
cuss and use SAT solvers, but mostly as tools for solving hard combinatorial problems, not
for proofs. Indeed, for sentential logic we developed our own theorem prover, prop-taut,
which was subsequently used inside chain applications to handle tedious steps. We believe
that the material presented in this book demonstrates that in a proper natural deduction
setting it is possible to write fairly high-level proofs without using any external theorem
provers as oracles, simply by starting with primitive introduction and elimination con-
structs and then using trusted abstraction mechanisms to introduce increasingly powerful
and higher-level reasoning methods. And in fact we have only scratched the surface of what
is possible here. Many more sophisticated methods can be implemented, from congruence
closure to general first-order reasoning, that could lift the level of proof detail even higher
while remaining within Athena’s semantics.

That said, theorem proving technology has made remarkable progress over the last 10—
15 years, and it is unlikely that hand-written methods will attain the level of automation and
efficiency achieved by state-of-the-art ATP systems. In large verification projects, having
access to that kind of automation can be a considerable boon to productivity. For that
reason, Athena is integrated with cutting-edge ATPs that can be seamlessly invoked as if
they were primitive methods or procedures.

In this chapter we briefly survey some of the mechanisms available in Athena for auto-
mated reasoning through external ATPs, describing their interface and illustrating their
use with examples. We specifically discuss: (a) automated theorem proving for general
(polymorphic many-sorted) first-order logic, and (b) SMT (satisfiability-modulo-theories)
solving. In the SMT section we also illustrate solving instances of the weighted Max-SMT
problem, the SMT analogue of the weighted Max-SAT problem that allows one to attach
numeric weights to clauses and search for models that maximize the total weight. We also
discuss the use of SMT solving in conjunction with binary search for the purpose of solv-
ing optimization problems over linear cost functions with very rich logical structure. Such
problems are typically easier to express in a sorted logical framework such as Athena than
in ILP (integer linear programming). Several examples of using SMT solving in Athena
(particularly for solving such highly constrained optimization problems) are available in
the literature; some references are given at the end of the chapter.
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D.1 General automated theorem proving

ATPs can be used in Athena in two ways, either via a primitive method, derive-from, or
via the following native syntax form:

p from Ji,...,J, (1)

where each J; is either a sentence or a list of sentences. We discuss these in turn.
The following is a very simple example of the use of form (1):

declare A, B, C, D, E: Boolean

> assume hyp := (A & B) {
B from hyp;
A from hyp;
(B & A) from A, B
3

Theorem: (if (and A B)
(and B A))

As each J; can be either a sentence or a list of sentences, one is able to write, e.g.,
p from hyp, reflect-def, axiom-1, lemma-2

where hyp, axiom-1, and lemma-2 are individual sentences and reflect-def is a list of
sentences (presumably defining a function symbol reflect; see the example below). Note
that (1) may only appear inside a proof block, as in the body of the assume shown above.
If it is to serve as a stand-alone deduction, it must be enclosed within curly braces.

The semantics of (1) are simple: an external ATP is invoked and given the task of deriv-
ing the goal sentence p from the listed premises (the sentences enumerated to the right
of from). All of these sentences must be in the assumption base at the time when this
derivation is attempted. If the ATP succeeds (within a default amount of time, typically
100 seconds), then the goal sentence is successfully returned as a theorem; otherwise an
error occurs. The from construct can be understood as syntax sugar for an application of
the ternary method derive-from, which provides a more flexible interface to ATPs, and to
which we now turn.

A call to derive-from is of the following form:

(!derive-from p L options).

The idea here is that L is a list of premises (sentences in the assumption base) and we
want to derive p from them. The third argument, options, is a map that specifies values
for certain parameters that will be described shortly. If you do not want to bother with
specifying options, use the method prove instead, like this:
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(!prove p L).

This is essentially a call to derive-from with some default option values, i.c.,
(!prove p L) is really a shorthand for

(!derive-from p L default-option-map).

Some simple examples of using prove are given below, first from sentential and then
from full first-order logic:

> assume hl := (A & B)
assume h2 := (~ C ==> ~ B)
(!prove C [h1 h21)

Theorem: (if (and A B)
(if (if (not C)
(not B))
€))

The resulting theorem is a tautology, so it could also be derived from the empty list of
premises:

clear-assumption-base
define [hyp-1 hyp-2] := [(A & B) (~ C ==> ~ B)]

> conclude theorem-1 := (hyp-1 & hyp-2 ==> C)
(!prove theorem-1 [1])

Theorem: (if (and (and A B)
(if (not C)
(not B)))
©

If the list L given as the second argument to prove is nonempty, then every sentence in L
must be in the assumption base when the method is applied, otherwise an error is reported.
An error will also occur if the first argument is not a sentence, or if the second argument is
not a list L. However, each individual element of L may be either a sentence or it can itself
be a list of sentences, i.e., L is of the form [V -- -V}, ] where each V; is either a sentence
or a list of sentences. If we write ¢ (V;) for the set of sentences represented by V;,! then
the ultimate set of sentences that will serve as the premises from which the goal is to be
derived can be written as:

Ue.
i=1

1 So that if V; is a single sentence p, ¢ (V;) is the singleton {p}; and if V; is a list of sentences [p; - - - py], then
¢ (V;) is the set {p1,...,pr}-
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For example:

datatype (BTree S) := null | (node S (BTree S) (BTree S))
define [t t' t1 t2] := [?2t ?2t' ?t1 ?t2]

declare reflect: (S) [(BTree S)] -> (BTree S)

assertx reflect-def :=
[(reflect null = null)
(reflect (node x t1 t2) = (node x (reflect t2) (reflect t1)))]

define (leaf x) := (node x null null) # A shorthand for making leaves
> (eval reflect (node 1 (leaf 2) (leaf 3)))

Term: (node 1
(node 3
null:(BTree Int)
null:(BTree Int))
(node 2
null:(BTree Int)
null:(BTree Int)))

define r := reflect # A shorthand for reflect

conclude reflect-twice := (forall t . r r t = t)
by-induction reflect-twice {
(t as null) => (!prove (r r t = t) reflect-def)
| (t as (node _ t1 t2)) =>
let {[ih1 ih2] := [(r r t1 = t1) (r r t2 = t2)]1}
(!prove (r r t = t) [ih1 ih2 reflect-def])
3

Here, in the second call to prove, the list argument contained as elements both the indi-
vidual sentences ih1 and ih2 as well as reflect-def, the list of sentences comprising the
definition of reflect.

If we wish, we may pass the entire assumption base as the second argument to prove.
For example, the above proof could also be written as:

conclude reflect-twice := (forall t . r r t = t)
by-induction reflect-twice {
(t as null) => (!prove (r r t = t) (ab))
| (t as (node _ _ _)) => (!prove (r r t = t) (ab))
3

We will have more to say on automating inductive proofs in section D.1.3.
Keep in mind, however, that the more premises we give to the ATP, the harder the prob-
lem becomes, as the underlying search space becomes increasingly large and intractable.



fpmics 2016/9/20 10:19 Page 915 #939

D.1. GENERAL AUTOMATED THEOREM PROVING 915

In fact, even with only 15-20 sentences in the assumption base, some of the best ATPs
are unable, when used with their default settings, to derive the desired conclusions shown
above from the entire assumption base within a reasonable time period (less than a couple
of minutes). In other words, if the assumption base is even moderately large, the proof as
given above will fail in the default amount of time allotted to an ATP call.2 In fact, often-
times, especially when equational reasoning is involved, chain might be able to succeed
at automation better than ATPs, even when it needs to contend with the entire assumption
base. For instance, even with many sentences in the assumption base, the automatic chain
calls below succeed quickly:

conclude reflect-twice := (forall t . reflect reflect t = t)
by-induction reflect-twice {
(t as null) => (!chain [(reflect reflect t) = t])
| (t as (node _ _ _)) => (!chain [(reflect reflect t) = tl)
3

(Recall that when no justification items are specified for a given chain step, the entire
assumption base is used by default.) Further, when an automated equational chain suc-
ceeds, a derivation is easy to obtain with find-eqn-proof (see footnote 21). In this case,
for example, if we inserted a call to find-eqn-proof before the inductive chain application,
say, like this:
| (t as (node _ _ _)) => let {[L R] := [(r r t) t]
_ := (print (find-egn-proof L R (ab)))}
(!chain [L = R1)

then we would essentially get as output the following detailed chain, along with elements
of the assumption base justifying each step, where ?v1, ?v2, and ?v3 are fresh variables
corresponding to the three wildcards in the pattern (t as (node _ _ _)):

L = (reflect reflect (node ?v1 ?v2 ?v3))

= (reflect (node ?v1 (reflect ?v3)
(reflect ?v2))) # from reflect-def

= (node ?v1 (reflect (reflect ?v2))
(reflect (reflect ?v3))) # from reflect-def

= (node ?v1 ?v2
(reflect (reflect ?v3)) # from the left i.h.

= (node ?v1 ?v2 ?v3) # from the right i.h

=R

2 It might succeed if we are willing to wait longer.
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Returning to external ATPs and the issue of large sets of premises, we note that the
problem of making ATPs ignore potentially useless or redundant information is an active
research area, especially in connection with reasoning in very large knowledge bases. One
approach is to use various syntactic or semantic criteria to eliminate from consideration
those premises which do not appear to be sufficiently related to the goal at hand. One
such simple technique is the SINE algorithm of Hoder and Voronkov [49]. SINE is imple-
mented in Athena. To use SINE-selected premises instead of the entire assumption base,
first load "sine" and then instead of (!derive-from p (ab) options) use

(!derive-from p (SINE.all-relevant-sentences p) options).

More recent—and more sophisticated—approaches include machine-learning-based algo-
rithms for inducing premise selection criteria from large proof corpora; see, e.g.,
Premise Selection for Mathematics by Corpus Analysis and Kernel Methods [2].

What happens under the hood during a call to derive-from or prove? Athena negates
the goal and translates that negation along with the given premises into vanilla first-order
logic (see more on that step in section D.1.1), then those sentences are converted into CNF
(conjunctive normal form), and finally the ATP specified in the options map is invoked on
the resulting set of sentences (we will describe that map shortly). The translations are fast,
so the bottleneck is typically the proof search—unsurprisingly, given that that is the really
hard problem.

Athena is integrated with two main ATPs (although any TPTP-compliant ATP can be
easily added): Spass and Vampire. Both systems can be downloaded from their websites.”
The default ATP is Spass. The user can specify which ATP to use in the options argument
to derive-from, as the value of the 'atp key. Another useful parameter whose value can
be specified in options is 'max-time, which specifies the maximum number of seconds that
Athena will wait for the ATP to find a proof. The default is 100 seconds. Thus, for instance,
the following calls Vampire with a maximum wait time of 20 seconds:

define goal := (forall x y . x =y <==>y = x)
define options := [{'atp := 'vampire, 'max-time := 203}|
> (!derive-from goal [] options)
Theorem: (forall ?x:'S
(forall ?y:'S

(iff (= ?7x:'S 2y:'S)
(= 2y:'S 7x:'S))))

3 After downloading them, the Vampire and Spass executables must be placed in the same directory as the Athena
executable and must be named vampire.exe and spass.exe in Windows environments or vampire and spass in
non-Windows environments.
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There are a few other parameters that can be set inside options, but they need not be
described here. The infix from construct (1) uses these default option values.

There are no restrictions on what sentential connectives or quantifiers may appear in the
goal or premises supplied to the primitive ATP methods, and there is no restriction on the
structure of these sentences. Free variables may appear in any of them, and even sentences
that are not legal first-order sentences in the conventional (unsorted) sense may be used as
inputs; Athena will automatically translate them into an equivalent form. For instance, the
following is a perfectly legal sentence in Athena’s sorted language, but would not be so in
conventional first-order logic:

(= (= 2%2%) (=2 ).
Nevertheless, it is correctly handled by the translation process:
> (!prove ((?x = ?y) = (?y = ?7x)) [D)

Theorem: (= (

(

?2x:'S ?y:'S)
2y:'S ?x:'S))

We close this section with some less trivial illustrations of the abilities of ATPs. For sen-
tential reasoning, consider the n” De Bruijn sentence, constructed by (make-db n) (see
Exercise 4.36):

define db-3 := (make-db 3)
> (!prove db-3 [1)

Theorem: (if (and (if (iff ?A1:Boolean ?A2:Boolean)
(and ?A1:Boolean
(and ?A2:Boolean ?A3:Boolean)))
(and (if (iff ?A2:Boolean ?A3:Boolean)
(and ?A1:Boolean
(and ?A2:Boolean ?A3:Boolean)))
(if (iff ?A3:Boolean ?A1:Boolean)
(and ?A71:Boolean
(and ?A2:Boolean ?A3:Boolean)))))
(and ?A1:Boolean
(and ?A2:Boolean ?A3:Boolean)))

> (!prove (make-db 4) [1)

- Error: ...
Unable to derive the conclusion ---
from the given hypotheses.

> (size (!prove (make-db 99) [1))

Term: 20195
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Before moving on to full first-order logic examples, we note that when Vampire is used,
it is possible to obtain as output those premises that were actually used in the discovered
proof. This can be useful in a variety of situations. For instance, we can check whether the
assumption base is inconsistent by attempting to derive false from it:

define (inconsistent-ab?) :=
match (!prove false (ab)) {
false => true
| _ => false

3
> (inconsistent-ab?)

-« Error: ...
Unable to derive the conclusion false from the given hypotheses.

When the prover is unable to show an inconsistency, as above, all is good and fine. (Though
if the assumption base is large enough we might want to increase the time limit signifi-
cantly.) However, if the prover does succeed in deriving false from the assumption base,
thereby establishing that the latter is inconsistent, all we would know is that some subset of
the assumption base is inconsistent. Typically, however, we would like to know precisely
which subset is inconsistent (i.e., which sentences exactly are implicated in the derivation
of a contradiction). This is just one example where an output list of the sentences that were
actually used in the discovered derivation is useful. To obtain such output, pass a cell as
the value of the 'used-premises key in the options map. If a proof is found, then the said
cell will afterward contain the premises used in that proof. To take a very simple example:

define prems := (cell [])

assert (A & B)
retract (B & A)

> (length (ab))

Term: 18
> (!derive (B & A) (ab) |{'atp := 'vampire,
'max := 60,
'used-premises := prems}|)

Theorem: (and B A)

> (ref prems)

List: [(and A B)]
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We close with a couple of first-order logic examples taken from Pelletier’s collection of
“seventy-five problems for testing automatic theorem provers” [81]. We first introduce the
following domain and symbols:

domain Object

declare P, Q: [Object] -> Boolean

declare a: Object

declare f: [Object Object] -> Object

We begin with Andrew’s challenge, which is solved instantaneously:

define left := ((exists x . forall y . P x <==> P y) <==>
((exists x . Q x) <==> (forall y . P y)))

define right := ((exists x . forall y . Q x <==> Q y) <==>
(exists x . P x) <==> (forall y . Q y))

> (!prove (left <==> right) [])

Theorem: (iff (iff (exists ?x:0bject
(forall ?y:0bject
(iff (P ?x:0bject)
(P ?y:0bject))))
(iff (exists ?x:0bject
(Q ?x:0bject))
(forall ?y:0bject
(P ?y:0bject))))
(iff (exists ?x:0bject
(forall ?y:0Object
(iff (Q ?x:0bject)
(Q ?y:0bject))))
(iff (exists ?x:0bject
(P ?x:0bject))
(forall ?y:0Object
(Q ?y:0bject)))))

The second problem is taken from group theory (problem 65 in the Pelletier set). The prim-
itive Athena procedure associative takes any binary symbol f and produces a sentence to
the effect that f is associative:

assert pl := (associative f)
assert p2 := (forall x . a f x = x)
define goal := ((forall x . x f x = a) ==> forall xy . x fy =y f x)

> (!prove goal [pl1 p2])
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Theorem: (if (forall ?x:0bject
(= (f ?x:0bject ?x:0bject)
a))
(forall ?x:0bject
(forall ?y:0bject
(= (f ?x:0bject ?y:0Object)
(f ?y:0bject ?x:0bject)))))

D.1.1 Many-sortedness and polymorphism

The most competitive extant ATPs are based on unsorted first-order logic.* Therefore, a
translation is necessary from the polymorphic many-sorted logic of Athena to classical
unsorted first-order logic. The translation need not preserve logical equivalence, but it must
preserve satisfiability.

Let us discuss simple (ground) sorts before we turn to polymorphism. Without a sort-
respecting translation, unsound results would be very easy to obtain. Consider, for instance,
the following perfectly innocuous assertions:

datatype Color := red | green | blue
assert pl := (red =/= green & green =/= blue & red =/= blue)
> assert p2 := (forall x . x = true | x = false)

The sentence
(forall ?x:Boolean
(or (= ?x:Boolean true)
(= ?x:Boolean false)))
has been added to the assumption base.

If we disregarded sorts, then at this point we would already have an inconsistent assumption
base, because the sort-less translations of p1 and p2 are as follows:

red # green A green # blue A red # blue
and
(Vx . x = true vV x = false),

which are mutually inconsistent, as the first implies that there are at least three things in
the universe, whereas the second implies that there are no more than two things.
A proper translation of p2 would be something along the lines of:

4 Spass is an exception, as it can accept many-sorted first-order logic formulas as input.
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(Vx . Boolean(x) = x = true V x = false),

which can be understood as saying that everything that is Boolean is either true or false.
That approach, first introduced by Wang in 1952 [110], requires the introduction of a new
unary predicate symbol S for each monomorphic sort S. Then, writing T[p] for the single-
sorted translation of a many-sorted sentence p, we have

T[(Vx:S.p)]=x.Sx)=Tpl)

and
T[@Ax:S.p)]=Gx.S&) ATPp)).

A similar but somewhat more complicated technique could accommodate polymor-
phism. Essentially, we could introduce a binary predicate has-sort relating Athena terms
to their possibly polymorphic sorts. Constraints built with has-sort could then be gener-
ated during the translation process as needed to capture the sort information attached to
Athena terms. For instance, a constraint like

(has-sort x (Pair S (List S))) 2)

would represent the polymorphic sort information associated with a variable such as
?x:(Pair ’S (List ’S)). (We would also need to introduce new unsorted function sym-
bols for every sort constructor, e.g., Pair would become a new binary function symbol
in our unsorted vocabulary.) The variable S would be universally quantified in any sen-
tence containing (2). Indeed, all sort variables S, . . ., S, corresponding to sort parameters
appearing in an Athena sentence would be universally quantified upfront in the translated
result. Sort constraints like (2) would be required for every polymorphic variable and every
polymorphic constant occurring in an Athena sentence. These constraints would be con-
joined to existential quantifications over a polymorphic sort, and would be conditional for
universal quantifications.

However, this approach would have the drawback of significantly altering the boolean
structure of the original sentence(s), which could have a negative impact on ATP perfor-
mance. An alternative approach is to leave the boolean structure intact and instead (recur-
sively) tag every term occurrence

f=(f ce)

in the sentence being translated with its sort information, so that every previous term occur-
rence of # now becomes an occurrence like (sorted-term ¢ s) where s is a (single-sorted)
term representing the sort of ¢, and sorted-term is a new and unique binary function sym-
bol. This is similar to the technique proposed by Couchot and Lescuyer [22] and is the
approach taken in Athena. The basic details, along with soundness proofs, can be found
in that paper. The presence of polymorphic subsorting requires some additional machinery
but since we do not discuss subsorting here we need not delve into those details.
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D.1.2 ATP-powered chaining

We can combine the structure and clarity of the tabular notation of chain with the power of
ATPs by turning on a settings flag, atps-with-chain. This flag is off by default. Accord-
ingly, for instance, if we tried to solve the above group theory problem (Pelletier problem
65) by chaining, we would fail:

assert pl := (associative f)
assert p2 := (forall x . a f x = x)
> assume hyp := (forall x . x f x = a)

pick-any x y
('chain [(x f y) = (y f x) [pl p2 hypll)

standard input:3:7: Error: Equational chaining error
on the 1st step of the chain, in going from: ---

Likewise for implication and/or equivalence chaining. For instance:

define left := ((exists x . forall y . P x <==> P y) <==>
((exists x . Q x) <==> (forall y . P y)))

define right := ((exists x . forall y . Q x <==> Q y) <==>
(exists x . P x) <==> (forall y . Q y))

> (!chain [left ==> right []])

standard input:1:2: Error: Implicational chaining error
on the 1st step of the chain, in going from: ---

However, if we turn the flag on, then each chaining step will be handed off to ATPs if the
regular chaining algorithm fails:

> set-flag atps-with-chain "on"
oK.

> assume hyp := (forall x . x f x = a)
pick-any x y
(fchain [(x f y) = (y f x) [pl p2 hypll)

Theorem: (if (forall ?x:0Object
(= (f ?x:0bject ?x:0bject)
a))
(forall ?x:0bject
(forall ?y:0bject
(= (f ?x:0bject ?y:0Object)
(f ?y:0bject ?x:0bject)))))

> (!chain [left ==> right []])
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Theorem: (if (iff (exists ?x:0bject
(forall ?y:0bject
(iff (P ?x:0bject)
(P ?y:0bject))))
(iff (exists ?x:0bject
(Q ?x:0bject))
(forall ?y:0Object
(P ?y:0bject))))
(iff (exists ?x:0bject
(forall ?y:0bject
(iff (Q ?x:0bject)
(Q ?y:0bject))))
(iff (exists ?x:0bject
(P ?x:0bject))
(forall ?y:0bject
(Q ?y:0bject)))))

> (!chain [left <==> right [1])

Theorem: (iff (iff (exists ?x:0bject
(forall ?y:0bject
(iff (P ?x:0bject)
(P ?y:0bject))))
(iff (exists ?x:0bject
(Q ?x:0bject))
(forall ?y:0bject
(P ?y:0bject))))
(iff (exists ?x:0bject
(forall ?y:0Object
(iff (Q ?x:0bject)
(Q ?y:0bject))))
(iff (exists ?x:0bject
(P ?x:0bject))
(forall ?y:0Object
(Q ?y:0bject)))))

D.1.3 Automated induction

Every time a datatype or structure by the name of § is introduced, Athena automatically
defines a method named s-induction, where s is the downcased version of S. For example,
when the polymorphic datatype List is introduced, Athena automatically defines a method
named list-induction. Likewise, when Pair is introduced, Athena automatically defines
a method pair-induction.
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These are all unary methods that take an arbitrary goal p and attempt to derive p auto-
matically by induction on S, where p is a universally quantified sentence over S:

(forall v:S @). (3)

The structure of the overall inductive proof is set up by Athena using the by-induction
schema automatically extracted from the definition of S. So in the case of List, for exam-
ple, the overall proof that would be attempted by a call of the form

(!list-induction p)
would be of the form:

by-induction p {

nil => (!prove p; (ab))
| (:: h t) => (!prove py (ab))
3

where p; and p, are the appropriate instances of p. In particular, p; is obtained from ¢
by replacing all free occurrences of v: S with nil, and p, is likewise obtained from ¢ by
replacing all free occurrences of v: S with (:: h t). Because Athena automatically inserts
inductive hypotheses in the assumption base before going on to evaluate the deduction D;
of each clause z; => D; in a by-induction proof, the call (ab) in line 3 will pick up the
appropriate inductive hypothesis for the tail t.

One drawback of the s-induction methods is that each inductive subproof will be a
call to prove with the contents of the entire assumption base as the value of the second
argument (the list of premises). There are two issues with that. First, the fact that we are
using prove means that this will be a default ATP call, so we cannot choose which theorem
prover to use, how long to wait in each case, and so on. And second, the fact that we are
always passing the entire assumption base to the ATP to use as premises is overkill. As
we discussed earlier, the larger the assumption base, the more difficult the job of the ATP
becomes.

An alternative interface to automated induction that gives us a much finer degree of
control is provided by methods named s-induction-with, which are also automatically
defined every time a datatype or structure S is introduced. Unlike s-induction, a method
of the form s-induction-with is binary. The first argument is again the desired goal, a
universally quantified sentence of the form (3). The second argument is what gives us the
greater control. It can be either a unary ATP method M or a map from the names of S’s
constructors to unary prover methods. Let’s start with the first alternative, when the second
argument to s-induction-with is a unary ATP method M. Thanks to static scoping, we can
pass as the value of this argument a method that takes the desired goal and tries to derive it
using ATPs but with whatever options we wish to specify, for instance:

(!list-induction-with p method (goal) (!derive-from goal (ab) opftions))
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where options specify which theorem prover to use or how long to wait for the answer. In
fact this approach also gives us a knob for adjusting the list of premises given to the ATP.
For instance, we might write:

(!list-induction-with p method (goal) (!derive-from goal (prems goal) options))

where (prems goal) is a procedure call that determines what premises to use depending
on the form of the goal.

Even greater flexibility is afforded by the second alternative, whereby the second argu-
ment to s-induction-with is a map from the names of S’s constructors to unary ATP
methods:

('list-induction-with p
[{'nil := method (goal)

:= method (goal)
12D

allowing us to tailor the ATP calls to the individual constructors involved in each case.

Using these sort-specific automated-induction methods as a basis, the Athena library
defines a couple of more generic automated-induction methods that can be deployed on
any datatype or structure: induction* and inductionx-with. The first is unary, whose
single argument is the goal to be inductively proved; and the second is binary, whose first
argument is the goal to be proved and whose second argument is a unary ATP method.

The first obvious difference of these two methods from the methods that were previ-
ously discussed is that there is no s- prefix needed, that is, it is not necessary to write
list-induction in one case vs. N-induction in the other, and so on. One simply writes
induction* (or inductionx-with). Another significant difference is that the goal given to
these methods does not even need to be of the form (3). The goal does need to be univer-
sally quantified, but there may be several universal quantifiers upfront:

Vx Vxy---Vx,.- -

and the very first one, V x1 , does not even need to range over a datatype or structure. It
may instead range over a conventional sort, such as Int or some user-introduced domain,
as long as some inner quantifier Vx;, i > 1, does range over a datatype or structure. In
that case Athena will pull that quantifier upfront (by swapping x; and x;) before attempting
an inductive proof, and after a successful derivation it will put the result back in its orig-
inal form. A second difference is that there may be multiple universal quantifiers ranging
over datatypes or structures, calling for nested inductive proofs. Athena will handle that
automatically as well.

The difference between induction* and induction*-with is akin to the difference
between s-induction and s-induction-with. The first form, induction*, uses default ATP



fpmics 2016/9/20 10:19 Page 926 #950

926 APPENDIX D. AUTOMATED THEOREM PROVING

settings and uses the entire assumption base as the premises for each ATP call. The latter
form, induction*-with, gives us greater control over ATP options and over which subset
of the assumption base to use, depending on the given goal.

Readers are encouraged to recast the development of one of the longer chapters, such as
Chapter 18, using ATPs.

D.2 SMT solving

Satisfiability-modulo-theories (SMT) [29] [30] is a fairly recent technology that can be
seen as a generalization of classic propositional satisfiability (see Section 4.13). An SMT
solver accepts as input a quantifier-free sentence with various interpreted and uninterpreted
function symbols. The interpreted atoms come from background theories such as linear
(integer or real) arithmetic, inductive datatypes, uninterpreted functions with equality, etc.
The satisfiability of an input sentence p is then determined with respect to these background
theories, along with the boolean structure of p. For instance, even though (1 < ) is a per-
fectly satisfiable sentence when regarded as an uninterpreted sentence of first-order logic, it
is clearly unsatisfiable when viewed specifically in the context of integer arithmetic. Most
SMT solvers will not simply determine whether p is satisfiable, but if it is, they will also
provide a satisfying model. Owing to their ability to natively handle useful background
theories, particularly arithmetic, SMT solvers have found a wide array of uses in a short
amount of time. For a general introduction to SMT solving and its applications, refer to
Satisfiability Modulo Theories: Introduction and Applications [29]. Applications of SMT
solving specifically in connection with Athena can be found in a number of publications
(6], [51, [7]-

Athena is integrated with two SMT solvers, Yices and CVC4, both of which can be freely
downloaded.’ SMT functionality in Athena is built into the top-level module SMT. The most
generic interface to that functionality is via the primitive binary procedure SMT. smt-solve.
The first argument is either a single sentence or a list of sentences, representing the con-
straint(s) to be solved. The second argument is a map providing values for various options
that control the SMT solving. The most important of these are:

» The value assigned to the key 'solver specifies which SMT solver to use. Current pos-
sible values for this key are 'yices and 'cvc.

* The value assigned to the key ' timeout is the maximum number of seconds that Athena
will wait for an answer from the solver.

» The value assigned to the key 'results is a hash table that will hold the output identities
produced by the solver when the input constraints are satisfiable. These identities will

5 They must be placed in the same directory as the Athena executable and named yices.exe and cvcopt.exe in
Windows environments or yices and cvc in non-Windows environments.
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therefore collectively determine a model for the given constraints. Specifically, the hash
table will map terms (not necessarily just variables) to lists of terms. That a term might
be mapped to several terms (a list thereof) is due to the fact that oftentimes SMT solvers
produce multiple equations of the form

t=t,t=t,...,t =t

In the API we are describing, the hash table will map ¢ to a list comprising #1, . . ., %,.

 The value assigned to the key 'stats is a cell that will contain a map providing informa-
tion (mostly running times) about various stages of the process, such as the translation
from Athena to the language accepted by the relevant SMT solver, the size of the trans-
lated sentence, the SMT solving itself, etc.

The result of a call to SMT.smt-solve is either 'Satisfiable or 'Unsatisfiable. In the
former case, the model produced as evidence of satisfiability will be contained in the hash
table that was specified in the call to SMT.smt-solve. Here is a simple example:

define ht := (HashTable.table)

define options := |{'solver := 'yices, 'results := ht}|
> (SMT.smt-solve (?x < 3) options)

Term: 'Satisfiable

> ht

Table: ?x:Int := [@]

Thus, we see that in this case the constraint (< ?x:Int 3) is determined to be satisfiable,
and the corresponding model is stored in ht. Of course, in this case the model is very
simple, consisting essentially of a single value assigned to the variable ?x.

A simpler interface is available when we are confident that the structure of the constraints
is such that a satisfying model will only assign values to variables, and at most one value
to each variable at that. In that case we can apply the unary procedure SMT.solve on the
given constraint (or list of constraints). The result will be either the term 'Unsatisfiable
or a substitution from variables to appropriate values. For example:

> (SMT.solve x < 3)
Substitution: {?x:Int --> 0}
> (SMT.solve x < 3 & x > 0)
Substitution: {?x:Int --> 1}

> (SMT.solve x < 3 & x > 2)
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Term: 'Unsatisfiable
> (SMT.solve x < 3.0 & x > 2.0)
Substitution: {?x:Real --> 2.5}

SMT. solve uses Yices by default.
SMT solvers understand data types natively:

datatype Day := Mon | Tue | Wed | Thu | Fri | Sat | Sun
define (weekday d) := (d = Mon | d = Tue | d = Wed | d = Thu | d = Fri)
define (weekend d) := (d = Sat | d = Sun)

define d := ?d:Day

> (SMT.solve weekday d & d =/= Fri)

Substitution: {?d:Day --> Thu}

> (SMT.solve weekday d & weekend d)

Term: 'Unsatisfiable

Reasoning with more complicated (e.g., recursive) datatypes is similar:
define [11 127 := [?11:(List 'S1) ?12:(List 'S2)]
> (SMT.solve 11 = 12 & 11 = 1::nil & 12 = 2::nil)
Term: 'Unsatisfiable

> (SMT.solve x = hd tl 1::2::nil)

Substitution: {?x:Int --> 2}

> (SMT.solve x = pair-left 1 @ 2)

Substitution: {?x:Int --> 1}

> (SMT.solve x = pair-right 'a @ 'b)
Substitution: {?x:Ide --> 'b}

(Recall that hd and tl are the selectors of the “consing” constructor of List, while
pair-left and pair-right are the selectors of the pair constructor.)

Polymorphism is handled automatically by the translation from Athena to the input lan-

guage of the respective SMT solver, though in a different way than the translation described
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in Section D.1.1. For SMT solving, Athena simply grounds sort parameters to concrete
sorts handled by the SMT solvers. This tends to produce the most digestible results. Here
is an example of reasoning with a polymorphic uninterpreted function:

declare f: (S) [S] -> S

define constraintl := (f f f f f f f x = x)

define constraint2 := (f f f f f x = x)
(SMT.holds? constraintl & constraint2 ==> f x = x)
Term: true

Note that SMT.holds? simply takes the given constraint, negates it, and tests for satisfia-
bility. If the negation is unsatisfiable, SMT.holds returns true, otherwise it returns false.
Thus, in this example, the result means that constraint-1 and constraint-2 logically
entail (f x = x).

The humble theory of uninterpreted functions from which the preceding example is
taken is in fact exceedingly useful, particularly in hardware verification. For instance, we
can often optimize a pipelined circuit to make it run faster by removing or rearranging
certain components of it, such as multiplexers. We must then prove that the new circuit is
in fact equivalent to the original one. That problem can often be posed as a satisfiability
problem in the theory of uninterpreted functions, where we use (e.g., boolean) functions to
model circuit components. The following example is taken from Section 3.5.1 of Decision
Procedures: An Algorithmic Point of View [62]. The first circuit stores its result in latch Ls,
and the optimized circuit stores its result in L/S.

declare L1, L2, L3, L4, L5, L1', L2', L3', L4', L5', input: Boolean
declare C,D,F,G,H,K: [Boolean] -> Boolean

define circuit-1 :=
(and (L1 = F input)

(L2 = L1)
(L3 = K G L1)
(L4 = H LT)

(L5 = (ite (C L2) L3 (D L4)))

define circuit-2 :=

(and (L1' = F input)
(L2' = cL1")
(L3' = (ite (C L1'") (G L1') (H L1')))
(L5' = (ite L2' (K L3') (D L3'))))
define correctness := (circuit-1 & circuit-2 ==> L5 <==> L5")

> (SMT.holds? correctness)
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Term: true

SMT problems formulated in Athena may include fragments from the theory of arrays,
which is represented here via the default maps discussed in Section 10.4.3, in module DMap.
At present only Yices can solve such problems. Some simple examples:

define [zero-map at] := [(DMap.empty-map @) DMap.atl;;
define updated-with :=
lambda (mapping p)
match p {
[key value]l => (DMap.update (pair key value) mapping)
| [key --> value] => (DMap.update (pair key value) mapping)};;

define query-1 := (?result = zero-map at x)

define query-2 := (?map = _ updated-with [7 --> 99] &
?map at 7 =/= 2 x 50 - 1)

define query-3 := (x < 2 & ?my-map at x =z & z =y + 8 &y > 99)
> (SMT.solve query-1)

Substitution: {?result:Int --> 0}

> (SMT.solve query-2)

Term: 'Unsatisfiable

> (SMT.solve query-3)

Substitution:

{?z:Int --> 108

?2y:Int --> 100
?x:Int --> 0}

We continue with an example that uses SMT solving to solve any instance of the N-
queens problem. The example is a fairly typical illustration of using Athena to fluidly
express complex constraints which are then outsourced for solution to an external solver.
Assuming we have N queens to place on an N x N chess board, the row and column of the
i queen will be respectively expressed by (row i) and (col i):

declare row, col: [Int] -> Int [150]
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We define a convenient shorthand in for expressing the constraint that a numeric variable
x should be in a given range defined by a low and a high endpoint, which are here placed
inside a two-element list:
define (in x L) :=
match L {
[1 h] => (1 <= x & x <= h)
}

> (x in [2 5])

Sentence: (and (<= 2 ?x:Int)
(<= ?x:Int 5))

We will also need an absolute-value function, which we can easily define as follows:

declare abs: [Int] -> Int

assertx abs-def := [(abs x = (ite (x < @) (- x) x))]

When does a queen threaten another queen on the same board? That happens iff the two
queens are on the same row, or on the same column, or else on the same diagonal. The
latter holds iff the absolute value of the row difference for the two queens is identical to
the absolute value of their column difference. We can readily express this with an Athena
procedure that takes the coordinates of two queens and produces a sentence that holds iff
the queens threaten each other:

define (threatens r1 c1 r2 c2) :=
(r1 = r2 | ¢l = c2 | abs (r1 - r2) = abs (c1 - c2))

For example:
> (threatens 1 2 1 5)

Sentence: (or (= 1 1)
(or (= 2 5)
(= (abs (- 1 1))
(abs (- 2 5))))»

We can now write a procedure that produces all the relevant constraints for a given instance
of the N-queens problem (i.e., for a given value of N) as follows:

define (make-constraints N) :=
let {all := (1 to N);
every-queen-somewhere :=
(map lambda (i)
(row i in [1 N] & col i in [1 NI)
all);
no-threats := (map
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lambda (p)
match p {
[i j] => (i =/= j ==> ~ threatens (row i) (col i)

(row j) (col j))
}
(cprod all all))}
(join every-queen-somewhere no-threats abs-def)

Note that cprod is a binary library procedure that forms the Cartesian product of two lists,
e.g.

> (cprod [1 2] [3 41)
List: [[1 31 [1 41 [2 3] [2 4]1]

That’s it. Observe that there is zero procedural knowledge expressed anywhere. The gen-
erated constraints are a purely declarative description of an instance of N-queens.

We can now readily arrive at a top-level solution that takes an input N and either outputs
'Unsatisfiable if there is no solution or else produces a list of row-column pairs for the
N queens that constitutes a solution:

[[ry 11 -+ [ry en11,
where [r; ¢;] gives the row and column of the ith queen:

define (solve-N-queens N) :=

let {constraints := (make-constraints N);
ht := (HashTable. table);
get-answer := lambda (f i) (first (HashTable.lookup ht (f i)))}
match (SMT.smt-solve constraints |{'solver := 'yices, 'results := ht}|) {
'Satisfiable => (map lambda (i) [(get-answer row i) (get-answer col i)]
(1 to N))

| res => res}

And in action:

> (solve-N-queens 2)
Term: 'Unsatisfiable
> (solve-N-queens 3)
Term: 'Unsatisfiable
> (solve-N-queens 4)
List: [[4 2] [3 41 [2 11 [1 311

> (solve-N-queens 6)
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List: [[5 4] [3 1] [6 2] [4 61 [2 31 [1 511
> (solve-N-queens 10)
List: [[6 5] [4 11 [7 71 [5 31 [8 2] [1 8] [3 91 [2 4] [10 6] [9 101]

Note that in this formalization one of the constraints was the actual definition of abs,
which was a universally quantified sentence. While that might work sometimes, depending
on the heuristics that SMT solvers might have for dealing with quantifiers, it is generally
not recommended to have any quantified formulas in the SMT input, since the solver might
not be able to handle them, and even if it does, performance might suffer. It is generally
better to ground all quantified sentences to a depth dictated by the size of the problem
instance and replace them with a Boolean combination of the resulting instances. In this
case we do not in fact need the general definition of abs; we only need the values of the abs
function on the input range that is possible for the given problem instance, namely (- N)
to N. So we can actually replace abs-def with what is essentially a look-up table for abs in
the range of interest:

define (abs-values N) :=
(map lambda (i)
(abs i = check {(i less? @) => (times (- 1) i) | else => i})
((= N) to N))

> (abs-values 2)

List: [

(= (abs (- 2))
2)

(= (abs (- 1))
1D]

(= (abs 0)
0)

(= (abs 1)
1D]

(= (abs 2)
2)

Changing the last line of make-constraints to make it use abs-values instead of abs-def
as follows:

(join every-queen-somewhere no-threats (abs-values N))
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has a dramatic impact on performance, making the solving over 50 times faster on average
(for large values of N).

We end this section with a discussion of the SMT version of Max-SAT. Max-SAT is a
well-studied generalization of satisfiability that allows for the solution of difficult optimiza-
tion problems. Max-SAT is just like the SAT problem described in Section 4.13, except that
it seeks to maximize the number of satisfied clauses. A more practically useful variant is
the weighted Max-SAT problem, where weights are attached to clauses and the objective
is to find an interpretation that maximizes (or equivalently, minimizes) the total weight of
the satisfied clauses. Max-SAT has a very large number of practical applications, including
probabilistic inference in Bayesian networks and general inference in Markov logic [24],
and even learning Bayesian networks directly from data [23]. Yices solves the weighted
Max-SAT problem in the context of SMT, so it is a further generalization of weighted Max-
SAT, which we may call Max-SMT. Athena exposes that functionality via the procedure
SMT.solve-max. The procedure is unary and takes as input a list of weighted constraints,
each of these being a pair of the form [¢ w] where ¢ is an Athena sentence (quantifier-less)
and w is the integer weight attached to c. Weights can be arbitrary integers or a special
“infinite” token, 'inf, indicating a hard constraint that must be satisfied no matter what.

Occasionally we deal with problems that are easier to model and solve if we can perform
general optimization by minimizing some (typically linear) objective function. Most SMT
solvers at present do not perform optimization (apart from Max-SAT, in the case of Yices),
but Athena efficiently implements an integer optimizer on top of SMT solving. The idea is
to use binary search to discover an optimal solution with as few calls to the SMT solver as
possible: at most O(log ») calls, where # is the maximum value that the objective function
can attain. Specifically, let ¢ be an arbitrary constraint that we wish to satisfy in such a way
that the value of some “cost” term ¢ is minimized, where max is the maximum value that
can be attained by the cost function (represented by ).° The algorithm is the following: We
first try to satisfy ¢ conjoined with the constraint that the cost term ¢ is between 0 and half
of the maximum possible value: 0 < ¢ < (max div 2). If we fail, we recursively call the
algorithm and try to satisfy ¢ augmented with the constraint (max div 2) + 1 < ¢t < max.
If we succeed, we recursively call the algorithm and try to satisfy ¢ augmented with the
constraint 0 < ¢ < (max div 4); and so on. This is guaranteed to converge to the minimum
value of ¢ for which c is satisfied, provided that the original constraint c¢ is satisfiable for
some value of 7. The algorithm is implemented by SMT. solve-and-minimize, so that

(SMT.solve-and-minimize ¢ t max)

returns a satisfying assignment for ¢ that minimizes ¢ (whose maximum value is max).
For example, suppose that x, y, and z are integer variables to be solved for (the role of
d-x, d-y and d-z will be explained shortly):

6 If this value is not known a priori, it can be taken to be the greatest positive integer that can be represented on
the computer.
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define [x y z d-x d-y d-z]

935

[?x:Int ?y:Int ?z:Int ?d-x:Int ?d-y:Int ?d-z:Int]

subject to the following disjunctive constraint:

define ¢ := (x in [10 20]

& y in [1 201 & z in [720 8e@] |
x in [500 600] & y in [30 40] & z in [920 925])

Suppose also that the desired values for these variables are x = 13, y = 15, z = 922.
Clearly these values cannot be attained subject to the given constraints. However, we would
like to find values for them that come as close as possible to the desired values while
respecting the constraints. This sort of problem has many practical applications (e.g., opti-
mal repair in access control requests [5]). We can readily model it in a form that is amenable
to solve-and-minimize as follows. First we define the objective-function term ¢ as the sum

of the three differences:

define t := (d-x + d-y + d-z)

with the individual difference terms defined as follows:

define d-x-def := (ite (x > 13)

(d-x
(d-x

define d-y-def := (ite (y >
(d-y
(d-y

define d-z-def := (ite (z >
(d-z
(d-z

= x - 13)
=13 - x))
15)

=y - 15)
=15 - y))
922)

=z - 922)
= 922 - z))

Thus, the “definition” of d-x states that if x is greater than 13 then d-x is equal to (x - 13),
otherwise d-x is equal to (13 - x). Accordingly, d-x captures the absolute value of the dif-
ference of x from 13. The definitions of the other two difference terms are similar. Assume
that we do not know the exact maximum value that t can attain, but we know that it cannot
be more than 10°. (In this case the maximum value of # is clearly smaller, but let us pretend
otherwise.) We can then solve the problem with the following call:

define diff-clauses := (d-x-def & d-y-def & d-z-def)

define query := (c & diff-clauses)

> (SMT.solve-and-minimize query t 1000000)

Substitution:
{?d-z:Int --> 122
?2d-y:Int --> 0
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?2d-x:Int --> 0
?z:Int --> 800
?y:Int --> 15
?x:Int --> 13}

This solution was found by a total of 8 calls to the SMT solver. Note that ?x and ?y are
identical to the desired values, while ?z is as close as possible to the desired value, namely,
800. For comparison purposes, here is the result that we would get if we solved the query
without minimizing #:

> (SMT.solve query)

Substitution:
{?d-z:Int --> 202
?2d-y:Int --> 14
?2d-x:Int --> 3
?z:Int --> 720
?2y:Int --> 1
?x:Int --> 10}

The total distance of this solution from the desired values is 487 + 15+ 1 = 503, as
opposed to 122, the distance returned by SMT.solve-and-minimize, which is the small-
est possible distance allowed by the given constraints.

Why were only 8 calls required when we started the binary search with a maximum of
10%? One would expect about log 10° calls to the SMT solver, i.e., roughly 20 such calls.
However, the implementation uses the information returned by each call to the SMT solver
to speed up the search. That often results in significant shortcuts, cutting down the total
number of iterations by more than a factor of 2.

This procedure allows for the optimization of any linear integer quantity. Moreover,
unlike independent branch-and-bound algorithms for integer programming, it allows not
just for numeric constraints, but for arbitrary boolean structure as well, along with con-
straints from other theories such as reals, lists and other algebraic datatypes, arrays, bit
vectors, etc. A drawback is that the entire core constraint plus the bound constraint is
solved anew each time we halve the range, so typically this method is not as fast as a native
optimizer. But in many cases the added modeling expressivity makes up for that.



